Constraining the initial conditions and temperature dependent transport with three-particle correlations in Au+Au collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 790 (2019) 81-88, 2019.
Inspire Record 1510301 DOI 10.17182/hepdata.101355

We present three-particle mixed-harmonic correlations $\la \cos (m\phi_a + n\phi_b - (m+n) \phi_c)\ra$ for harmonics $m,n=1-3$ for charged particles in $\sqrt{s_{NN}}=$200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark-gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent transport and the longitudinal structure of the initial state at RHIC.

2 data tables

Dependence of mixed harmonic correlators $C_{1,2,3}$ and $C_{2,2,4}$ on relative pseudorapidity.

Centrality dependence of mixed harmonic correlators $C_{m,n,m+n}$.


Event-plane dependent dihadron correlations with harmonic $v_n$ subtraction in Au+Au Collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 89 (2014) 041901, 2014.
Inspire Record 1288534 DOI 10.17182/hepdata.97120

STAR measurements of dihadron azimuthal correlations ($\Delta\phi$) are reported in mid-central (20-60\%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_{s}=|\phi_{t}-\psi_{\rm EP}|$. The elliptic ($v_2$), triangular ($v_3$), and quadratic ($v_4$) flow harmonic backgrounds are subtracted using the Zero Yield At Minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side ($|\Delta\phi|<\pi/2$) long-range pseudorapidity correlation (ridge) is present in the in-plane direction ($\phi_{s}\sim 0$). The away-side ($|\Delta\phi|>\pi/2$) correlation shows a modification from d+Au data, varying with $\phi_{s}$. The modification may be a consequence of pathlength-dependent jet-quenching and may lead to a better understanding of high-density QCD.

0 data tables

Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Chin.Phys.C 45 (2021) 044002, 2021.
Inspire Record 872067 DOI 10.17182/hepdata.102351

Dihadron azimuthal correlations containing a high transverse momentum ($p_T$) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60%) Au+Au collisions at $\sqrt{s_{_{\rm NN}}}=200$ GeV as a function of the trigger particle's azimuthal angle relative to the event plane, $\phi_s=|\phi_t-\psi_{\rm EP}|$. The azimuthal correlation is studied as a function of both the trigger and associated particle $p_T$. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (ZYAM), are described. The correlation results are first discussed with subtraction of the even harmonic (elliptic and quadrangular) flow backgrounds. The away-side correlation is strongly modified, and the modification varies with $\phi_s$, with a double-peak structure for out-of-plane trigger particles. The near-side ridge (long range pseudo-rapidity $\Delta\eta$ correlation) appears to drop with increasing $\phi_s$ while the jet-like component remains approximately constant. The correlation functions are further studied with subtraction of odd harmonic triangular flow background arising from fluctuations. It is found that the triangular flow, while responsible for the majority of the amplitudes, is not sufficient to explain the $\phi_s$-dependence of the ridge or the away-side double-peak structure. ...

890 data tables

flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 5

flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 0

flow background with lower flow systematic uncertainty Au+Au 20-60%, 4<p_{\text{T}}^{(t)}<6 GeV/c, slice 1

More…

Charge-dependent pair correlations relative to a third particle in $p$+Au and $d$+Au collisions at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 798 (2019) 134975, 2019.
Inspire Record 1738942 DOI 10.17182/hepdata.105911

Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.

0 data tables

Azimuthal Harmonics in Small and Large Collision Systems at RHIC Top Energies

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 122 (2019) 172301, 2019.
Inspire Record 1716552 DOI 10.17182/hepdata.105870

The first ($v_1^{\text{even}}$), second ($v_2$) and third ($v_3$) harmonic coefficients of the azimuthal particle distribution at mid-rapidity, are extracted for charged hadrons and studied as a function of transverse momentum ($p_T$) and mean charged particle multiplicity density $\langle \mathrm{N_{ch}} \rangle$ in U+U ($\roots =193$~GeV), Au+Au, Cu+Au, Cu+Cu, $d$+Au and $p$+Au collisions at $\roots = 200$~GeV with the STAR Detector. For the same $\langle \mathrm{N_{ch}} \rangle$, the $v_1^{\text{even}}$ and $v_3$ coefficients are observed to be independent of collision system, while $v_2$ exhibits such a scaling only when normalized by the initial-state eccentricity ($\varepsilon_2$). The data also show that $\ln(v_2/\varepsilon_2)$ scales linearly with $\langle \mathrm{N_{ch}} \rangle^{-1/3}$. These measurements provide insight into initial-geometry fluctuations and the role of viscous hydrodynamic attenuation on $v_n$ from small to large collision systems.

0 data tables

Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.C 106 (2022) 034908, 2022.
Inspire Record 1800376 DOI 10.17182/hepdata.95210

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. We extract a $v_2$-independent and $m_{\rm inv}$-averaged signal $\Delta\gamma_{\rm sig}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$ =(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$, within pion $p_{T}$ = 0.2 - 0.8~\gevc and averaged over pseudorapidity ranges of $-1 < \eta < -0.05$ and $0.05 < \eta < 1$. This represents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result, at $95\%$ confidence level for the $m_{\rm inv}$-integrated CME contribution.

9 data tables

The $m_{\rm inv}$ dependences of the OS and SS pion pair multiplicities in 20-50$\%$ Au+Au collisions at 200 GeV.

The $m_{\rm inv}$ dependences of the $\gamma_{OS}$, $\gamma_{SS}$ in 20-50$\%$ Au+Au collisions at 200 GeV.

$m_{\rm inv}$ dependences of the relative excess of OS over SS pion pairs in 20-50$\%$ Au+Au collisions at 200 GeV.

More…

K*0 production in Cu+Cu and Au+Au collisions at \sqrt{s_NN} = 62.4 GeV and 200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.C 84 (2011) 034909, 2011.
Inspire Record 857694 DOI 10.17182/hepdata.102405

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \to K+ pi- and \bar{K*0} \to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, <pT>, are presented. The measured N(K*0)/N(K) and N(\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

64 data tables

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Au+Au collisions at $\sqrt{s_{NN}}$ =62.4 GeV after mixed-event background subtraction.

The K$\pi$ pair invariant mass distribution integrated over the $K^{*0}$ $p_T$ for minimum bias Cu+Cu collisions at $\sqrt{s_{NN}}$ =200 GeV after mixed-event background subtraction.

More…

Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

35 data tables

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 19.6 GeV. Values are shown with NBD, Poisson and UrQMD predictions. Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 27 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

Centrality dependence of single cumulants C1, of net-lambda multiplicity distributions at Au + Au collision 39 GeV. Values are shown with NBD, Poisson and UrQMD predictions.Npart values are from Phys. Rev. C 104, 024902 (2021) and they are little different than the values shown in the original paper.

More…

Evidence for Nonlinear Gluon Effects in QCD and their $A$ Dependence at STAR

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.Lett. 129 (2022) 092501, 2022.
Inspire Record 1972873 DOI 10.17182/hepdata.115421

The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-$\pi^0$s produced at forward pseudorapidities ($2.6<\eta<4.0$) in $p$+$p$, $p+$Al, and $p+$Au collisions at a center-of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back $\pi^0$ pairs in $p+$Al and $p+$Au collisions compared to the $p$+$p$ data. The observed suppression of back-to-back pairs as a function of transverse momentum suggests nonlinear gluon dynamics arising at high parton densities. The larger suppression found in $p+$Au relative to $p+$Al collisions exhibits a dependence of the saturation scale, $Q_s^2$, on the mass number, $A$. A linear scaling of the suppression with $A^{1/3}$ is observed with a slope of $-0.09$$\pm$$0.01$.

0 data tables

Probing the gluonic structure of the deuteron with $J/\psi$ photoproduction in d+Au ultra-peripheral collisions

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 122303, 2022.
Inspire Record 1922652 DOI 10.17182/hepdata.113508

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/\psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{_{\rm NN}}}=200~\rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.

0 data tables