Results are presented of a bubble chamber experiment on K − p elastic scattering at 14.3 GeV/ c , in four-momentum transfer range 0.04 < | t | < 2.74 GeV 2 using an initial set of 40 000 events. The total elastic cross section is (2.96 ± 0.10) mb. The results are compared with K + p elastic scattering data at 13.8 GeV/ c , and the effective Regge trajectory is calculated using K − p data from 5 to 100 GeV/ c .
FOR -T < 0.04 GEV**2, CROSS SECTION WAS EXTRAPOLATED TO THE OPTICAL POINT WITH -0.055+-0.040 FOR THE REAL/IMAGINARY RATIO OF THE FORWARD AMPLITUDE.
No description provided.
The fragmentation of the neutron into p π − induced by incident K + of 8.25 GeV/ c is studied using data from the CERN 2 m deuterium bubble chamber and compared with data at 4.6 and 12 GeV/ c . The p π − low-mass enhancement below 1.85 GeV is analyzed and the major part exhibits the properties expected for diffraction dissociation. The presence of resonances is discussed. The data are fairly well represented by a double Regge exchange model involving pion and pomeron exchanges. The violation of the s -channel and t -channel helicity conservation is observed and compared to the s -channel description of Humble.
INTERCEPT AND SLOPE OF DIFFERENTIAL CROSS SECTION FOR -TP < 0.24 (0.48 FOR N1700) GEV**2.
Significant two-particle correlations of dynamical origin are observed in 200 GeV/c π−p inclusive interactions. This is demonstrated by comparison with kinematic correlations calculated from an independent-particle-emission model. Two distinct correlation types are observed: (a) unlike-particle correlations with correlation length ∼ 1.3 rapidity units independent of azimuthal separation, and (b) like-particle correlations with correlation length ∼ 0.4 rapidity units which are observed only for small azimuthal separations.
No description provided.
No description provided.
No description provided.
The total cross section for hadron production by inelastic electron scattering at 3.2° from a number of nuclei has been measured at several virtual photon energies at fixed Q2=0.1 (GeV/c)2. The hadronic cross section is measured directly, by detecting at least one hadron in coincidence with the scattered electron. The results show very little shadowing and no detectable energy dependence. These observations contradict vector-meson dominance.
N(C=N) and N(C=P) are the numbers of the neutrons and protons in nucleus.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.
EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.
The radiative decay models of the φ-meson have been studied: e + e − → φ → ηγ →3 γ ; e + e − → φ → π o γ →3 γ . Cross sections σ φ → ηγ →3 γ and σ φ → π o γ →3 γ have been measured at five energies in the φ-meson energy region and clearly show the φ-resonance in the ηγ → 3 γ mode as well as in the π o γ → 3 γ mode. From a Breit-Wigner fit to the experimental data the values of the branching ratios are deduced: B φ → ηγ = (1.5 ± 0.4) × 10 −2 ; B φ → π o γ = (1.4 ± 0.5) × 10 −3 .
REMOVING RADIATIVE CORRECTIONS, THE PHI PEAK CROSS SECTIONS ARE 66 NB +- 25 PCT <ETA GAMMA> AND 6.5 NB +- 30 PCT <PI0 GAMMA>.
Correlations between pions produced in pp collisions at 69 GeV/c are observed both for π−π+ and π−π−. Short-range correlations in rapidity are present fory1⋍y2 in both cases; an enhancement is seen aroundy1=y2=±1. Correlations between transverse variables are linked to those in rapidity for π−π− combinations, whereas the effect is essentially kinematical for π+π−.
No description provided.
No description provided.
No description provided.
New data from a 600 000 picture exposure of the BNL 31 inch hydrogen bubble chamber to a separated antiproton beam have been analyzed to try to determine if the π + π − π + π − or π + π − π + π − π 0 final states contribute any broad or narrow structure in the T(2190) region. The resonance channel fractions determined by maximum likelihood fits are all consistent with smooth behavior through the T-region and therefore there is no significant evidence that any of these resonance channels contributes to the broad bump in the total cross section. The errors on some of the fractions, however, limit the sensitivity to ∼ 0.5 mb for enhancements in these channels.
RESONANCE CHANNEL PERCENTAGES FROM FIT TO PI+ PI- PI+ PI- FINAL STATE.
RESONANCE CHANNEL PERCENTAGES FROM FIT TO PI+ PI- PI+ PI- PI0 FINAL STATE.
The results are presented of two partial-wave analyses of the (3π) − system in 30 000 events of the reaction π − p → π − π − π + p at 11.2 GeV/ c . Both techniques incorporate the assumptions of the isobar model and are (a) the University of Illinois program which fits in terms of the (3π) density matrix elements and (b) an amplitude parametrisaton including possible effects of both spin non-flip and spin flip at the baryon vertex. The results obtained with these independent programs are found to be very close.
NORMALIZED TO A TOTAL REACTION CROSS SECTION OF 1.17 +- 0.24 MB. ALL QUOTED CROSS SECTIONS ARE FOR INTEGRATED BREIT-WIGNERS.
A2 2+D-WAVE FOR 1.2 < M(3PI) < 1.4 GEV. THE FIRST THREE COMBINATIONS OF DENSITY MATRIX ELEMENTS ARE FOR NATURAL PARITY EXCHANGE, AND THE REMAINDER UNNATURAL.