Date

Collaboration

Subject_areas

Search for electroweak-scale dijet resonances using trigger-level analysis with the ATLAS detector in $132$ fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-194, 2025.
Inspire Record 2966134 DOI 10.17182/hepdata.161624

This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.

8 data tables

Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.

Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.

Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.

More…

Search for boosted low-mass resonances decaying into hadrons produced in association with a photon in pp collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 01 (2025) 099, 2025.
Inspire Record 2813982 DOI 10.17182/hepdata.153849

Many extensions of the Standard Model, including those with dark matter particles, propose new mediator particles that decay into hadrons. This paper presents a search for such low mass narrow resonances decaying into hadrons using 140 fb$^{-1}$ of proton-proton collision data recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV. The resonances are searched for in the invariant mass spectrum of large-radius jets with two-pronged substructure that are recoiling against an energetic photon from initial state radiation, which is used as a trigger to circumvent limitations on the maximum data recording rate. This technique enables the search for boosted hadronically decaying resonances in the mass range 20-100 GeV hitherto unprobed by the ATLAS Collaboration. The observed data are found to agree with Standard Model predictions and 95% confidence level upper limits are set on the coupling of a hypothetical new spin-1 $Z'$ resonance with Standard Model quarks as a function of the assumed $Z'$-boson mass in the range between 20 and 200 GeV.

6 data tables

Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

Invariant mass $m_{J}$ of the resonance candidates in the region defined with forward photon $\eta_{\gamma} > 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and an anti-tagged large-$R$ jetafter the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

More…

Search for low-mass resonances decaying into two jets and produced in association with a photon or a jet at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 032002, 2024.
Inspire Record 2768375 DOI 10.17182/hepdata.145799

A search is performed for localized excesses in the low-mass dijet invariant mass distribution, targeting a hypothetical new particle decaying into two jets and produced in association with either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample from LHC proton-proton collisions collected by the ATLAS experiment at a center-of-mass energy of 13 TeV during 2015-2018. Two variants of the search are presented for each type of initial-state radiation: one that makes no jet flavor requirements and one that requires both of the jets to have been identified as containing $b$-hadrons. No excess is observed relative to the Standard Model prediction, and the data are used to set upper limits on the production cross-section for a benchmark $Z'$ model and, separately, for generic, beyond the Standard Model scenarios which might produce a Gaussian-shaped contribution to dijet invariant mass distributions. The results extend the current constraints on dijet resonances to the mass range between 200 and 650 GeV.

12 data tables

Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

Dijet invariant mass distributions data compared to the fitted background estimates for the $\gamma b b$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

Dijet invariant mass distributions data compared to the fitted background estimates for the $j j j$ channel. The distributions are shown here with the $m_{jj}$ resolution binning.

More…

Search for invisible particles produced in association with single top quarks in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 263, 2024.
Inspire Record 2762383 DOI 10.17182/hepdata.146896

A search for events with one top quark and missing transverse momentum in the final state is presented. The fully hadronic decay of the top quark is explored by selecting events with a reconstructed boosted top-quark topology produced in association with large missing transverse momentum. The analysis uses 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s}$=13 TeV recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The results are interpreted in the context of simplified models for Dark Matter particle production and the single production of a vector-like $T$ quark. In the absence of a significant excess with respect to the Standard Model expectations, 95% confidence-level upper limits on the corresponding cross-sections are obtained. The production of Dark Matter particles in association with a single top quark is excluded for masses of a scalar (vector) mediator up to 4.3 (2.3) TeV, assuming $m_\chi$=1 GeV and the model couplings $\lambda_q$=0.6 and $\lambda_\chi$=0.4 ($a$=0.5 and $g_\chi$=1). The production of a single vector-like $T$ quark is excluded for masses below 1.8 TeV assuming a coupling to the top quark $\kappa_T$=0.5 and a branching ratio for $T\to Zt$ of 25%.

19 data tables

95% CL upper limits on the cross-section of the considered signal models as a function of the DM scalar mediator $\phi$ mass (for fixed model parameters of $\lambda_q =0.6$, $y_\chi=0.4$ and $m_\chi=1$ GeV).

95% CL upper limits on the cross-section of the considered signal models as a function of the DM vector mediator $V$ mass (for $a=0.5$, $g_\chi=1$ and $m_\chi=1$ GeV).

95% CL upper limits on the cross-section of the considered signal models as a function of the vector-like $T$ quark mass (for $\kappa_T=0.5$).

More…

Search for new phenomena in two-body invariant mass distributions using unsupervised machine learning for anomaly detection at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 081801, 2024.
Inspire Record 2674351 DOI 10.17182/hepdata.144864

Searches for new resonances are performed using an unsupervised anomaly-detection technique. Events with at least one electron or muon are selected from 140 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by ATLAS at the Large Hadron Collider. The approach involves training an autoencoder on data, and subsequently defining anomalous regions based on the reconstruction loss of the decoder. Studies focus on nine invariant mass spectra that contain pairs of objects consisting of one light jet or $b$-jet and either one lepton ($e$, $\mu$), photon, or second light jet or $b$-jet in the anomalous regions. No significant deviations from the background hypotheses are observed.

15 data tables

Distributions of the anomaly score from the AE for data and five benchmark BSM models. Their legends, from top to bottom, are; (1) charged Higgs boson production in association with a top quark, $tbH^{+}$ with $H^{+} \rightarrow t\bar{b}$; (2) a Kaluza-Klein gauge boson, $W_{KK}$, with the SM $W$ boson and a radion $\phi$; (3) a $Z'$ boson decaying to a composite lepton $E$ and $\ell$, with $E \rightarrow Z\ell$ with a mass of 0.5 TeV; (4) the SSM $W$'$\rightarrow W Z' \rightarrow \ell\nu q\bar{q}$; (5) a simplified dark-matter model with an $Z$ axial-vector mediator $Z' \rightarrow q\bar{q}$, where one of the quarks radiates a $W$ boson decaying to $\ell\nu$. The BSM predictions represent the expected number of events from 140 $fb^{-1}$ of data for heavy particle ($H^{+}$ ,$W_{KK}$ , $Z'$ , $W'$ and $Z'$, respectively) masses around 2 TeV. The distributions for the BSM models are smoothed to remove fluctuations due to low MC event counts. The vertical lines indicate the start of the three anomaly regions (ARs). The labels of the three ARs indicate the visible cross section for hypothetical processes yielding the same number of events as observed in the 140 $fb^{-1}$ dataset. The AE is applied to preselected events without any requirements on invariant mass distributions.

Invariant mass distributions of jet+Y for $M_{jY}$ > 0.3 TeV in the 10 pb AR along with the fit of Eq. (1). The fits are represented by the lines, while the associated statistical uncertainties are indicated by the shaded bands. The lower panels show the bin-by-bin significances of deviations from the fit, calculated as $(d_{\textit{i}} - f_{i})/\delta_{\textit{i}}$, where $d_{i}$ is the data yield, $f_{\textit{i}}$ is the fit value, and $\delta_{i}$ is the data uncertainty in the $\textit{i}$-th bin.

Values of $\Delta Z$ for the discovery sensitivity, as defined in the text, as a function of the invariant mass $\textit{m}$. The j+j invariant mass distribution is calculated in the 10 pb AR. Positive percentages indicate improvements in sensitivity. Horizontal dashed lines are drawn at 100% and 200% to guide the eye. The five benchmark BSM models are (1) charged Higgs boson production in association with a top quark, $tbH^{+}$ with $H^{+} \rightarrow t\bar{b}$; (2) a Kaluza-Klein gauge boson, $W_{KK}$, with the SM $W$ boson and a radion $\phi$; (3) a $Z'$ boson decaying to a composite lepton $E$ and $\ell$, with $E \rightarrow Z\ell$; (4) the sequential standard model $W' \rightarrow W Z' \rightarrow \ell\nu q\bar{q}$; (5) a simplified dark-matter model with an axial-vector mediator $Z' \rightarrow q\bar{q}$, where one of the quarks radiates a $W$ boson decaying to $\ell\nu$. The multiple markers shown for the composite-lepton model at the same invariant mass values correspond to different composite lepton ($E$) masses between 0.25 and 3.5 TeV. The center positions of the markers are set to the masses of the corresponding heavy particles.

More…

Search for inelastic dark matter in events with two displaced muons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 041802, 2024.
Inspire Record 2661228 DOI 10.17182/hepdata.140434

A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb$^{-1}$ of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section $\sigma$(pp $\to$ A' $\to$$\chi_1$$\chi_2$) and the decay branching fraction $\mathcal{B}$($\chi_2$$\to$$\chi_1 \mu^+ \mu^-$), where A' is a dark photon and $\chi_1$ and $\chi_2$ are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.

6 data tables

Definition of ABCD bins and yields in data, per match category. The predicted yield in the bin with the smallest backgrounds (bin D) is extracted from the simultaneous four-bin fit by assuming zero signal, which corresponds to $(\text{Obs. B} \times \text{Obs. C}) / (\text{Obs. A})$ in this limit.

Systematic uncertainties in the analysis. The jet uncertainties are larger in 2017 because of noise issues with the ECAL endcap. The tracking inefficiency in 2016 is caused by the unexpected saturation of photodiode signals in the tracker.

Simulated muon reconstruction efficiency of standard (blue squares) and displaced (red circles) reconstruction algorithms as a function of transverse vertex displacement $v_{xy}$. The two dashed vertical gray lines denote the ends of the fiducial tracker and muon detector regions, respectively.

More…

Search for dark matter produced in association with a single top quark and an energetic $W$ boson in $\sqrt{s}=$ 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 83 (2023) 603, 2023.
Inspire Record 2514114 DOI 10.17182/hepdata.136029

This paper presents a search for dark matter, $\chi$, using events with a single top quark and an energetic $W$ boson. The analysis is based on proton-proton collision data collected with the ATLAS experiment at $\sqrt{s}=$ 13 TeV during LHC Run 2 (2015-2018), corresponding to an integrated luminosity of 139 fb$^{-1}$. The search considers final states with zero or one charged lepton (electron or muon), at least one $b$-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state, $H^{\pm}$, arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle, $a$: $H^{\pm} \rightarrow W^\pm a (\rightarrow \chi\chi)$. Signal models with $H^{\pm}$ masses up to 1.5 TeV and $a$ masses up to 350 GeV are excluded assuming a tan$\beta$ value of 1. For masses of $a$ of 150 (250) GeV, tan$\beta$ values up to 2 are excluded for $H^{\pm}$ masses between 200 (400) GeV and 1.5 TeV. Signals with tan$\beta$ values between 20 and 30 are excluded for $H^{\pm}$ masses between 500 and 800 GeV.

161 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=highst_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=highst_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=lowst_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=lowst_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_highst_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Obs.)</a> <li><a href="?table=2L_highst_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=2L_lowst_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW signals (Exp.)</a> <li><a href="?table=highst_dmtt_mamh_obs">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mamh_exp">Combined sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=highst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mamh_obs">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mamh_exp">Combined sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_lowma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_obs">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=lowst_dmtt_mhtb_highma_exp">Combined sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_highst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_obs">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mamh_exp">0L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_lowma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_obs">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=0LBoosted_lowst_dmtt_mhtb_highma_exp">0L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_highst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_obs">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mamh_exp">1L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_lowma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_obs">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=1LBoosted_lowst_dmtt_mhtb_highma_exp">1L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mamh_obs">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.7 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_highst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.7 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mamh_exp">2L channel sin$\theta$ = 0.35 $m_a$-$m_{H^{\pm}}$ exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_lowma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 150 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_obs">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Obs.)</a> <li><a href="?table=2L_lowst_dmtt_mhtb_highma_exp">2L channel sin$\theta$ = 0.35 $m_{H^{\pm}}$-tan$\beta$ ($m_{a}$ = 250 GeV) exclusion contour using DMtW+DMtt signals (Exp.)</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_Comb_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from combined (0L+1L+2L) fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 0L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_0L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 0L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.7) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p7_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.7) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35">Observed upper limit on the 2HDM+a tW+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mamH_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM(sin$\theta$ = 0.35) cross-sections from 1L individual fit in the $m_a$-$m_{H^{\pm}}$ plane.</a> <li><a href="?table=mHtblow_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM +tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the low $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> <li><a href="?table=mHtbhigh_xSecUpperLimit_1L_st0p35_DMtt">Observed upper limit on the 2HDM+a tW+DM + tt+DM (sin$\theta$ = 0.35) cross-sections from 1L individual fit in the high $m_a$ $m_{H^{\pm}}$-tan$\beta$ plane.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SR0L_mwtagged">0L region m(b1,W-tagged)</a> <li><a href="?table=SR0L_mtbmet">0L region m_{\mathrm{T}}^{\mathrm{b,E_{\mathrm{T}^{\mathrm{miss}}}}}</a> <li><a href="?table=SR0L_nwtagged">0L region N_{\mathrm{W-tagged}}</a> <li><a href="?table=SR1L_Had_mbj">1L hadronic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_mbj">1L leptonic top $m_{\mathrm{b1},\mathrm{\cancel{b1}}}$</a> <li><a href="?table=SR1L_Lep_nwtaggged">1L leptonic top region N_{\mathrm{W-tagged}}</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SR0L">Cutflow of 4 signal points in the 0L regions.</a> <li><a href="?table=cutflow_SR1L_Had">Cutflow of 4 signal points in the 1L hadronic top regions.</a> <li><a href="?table=cutflow_SR1L_Lep">Cutflow of 4 signal points in the 1L leptonic top region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>highst_grid1_0L:</b> <a href="?table=highst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_0L:</b> <a href="?table=highst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_0L:</b> <a href="?table=highst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>highst_grid1_1L:</b> <a href="?table=highst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=highst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>highst_grid2_1L:</b> <a href="?table=highst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=highst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>highst_grid3_1L:</b> <a href="?table=highst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=highst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.7, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_0L:</b> <a href="?table=lowst_grid1_Acc_0L">Acceptance table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_0L">Efficiency table of the 0L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_0L:</b> <a href="?table=lowst_grid2_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_0L:</b> <a href="?table=lowst_grid3_Acc_0L">Acceptance table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_0L">Efficiency table of the 0L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <li> <b>lowst_grid1_1L:</b> <a href="?table=lowst_grid1_Acc_1L">Acceptance table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <a href="?table=lowst_grid1_Eff_1L">Efficiency table of the 1L SRs in the $m_a$-$m_{H^{\pm}}$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and tan$\beta$ = 1.</a> <li> <b>lowst_grid2_1L:</b> <a href="?table=lowst_grid2_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <a href="?table=lowst_grid2_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 150 GeV.</a> <li> <b>lowst_grid3_1L:</b> <a href="?table=lowst_grid3_Acc_1L">Acceptance table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> <a href="?table=lowst_grid3_Eff_1L">Efficiency table of the 1L SRs in the $m_{H^{\pm}}$-tan$\beta$ plane for 2HDM+a signals with sin$\theta$ = 0.35, $m_{\chi}$ = 10 GeV and $m_a$ = 250 GeV.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

The observed exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

The expected exclusion contour at 95% CL as a function of the $m_a$ vs. $m_{H^{\pm}}$ and assuming tan$\beta$ = 1, $m_{\mathrm{DM}} = 10 \mathrm{GeV}$, $g_{\chi} = 1$ and sin$\theta = 0.7$. Masses that are within the contours are excluded. Only signals simulating the tW+DM final states are considered in this contour.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the one-lepton final state at $\sqrt{s}$=13 TeV using 139 fb$^{-1}$ of $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 116, 2023.
Inspire Record 2181868 DOI 10.17182/hepdata.132484

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.

25 data tables

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.

Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>&beta;=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.

More…

Version 3
Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 156, 2022.
Inspire Record 1994864 DOI 10.17182/hepdata.115426

The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb$^{-1}$, collected with the CMS detector at the CERN LHC, at $\sqrt{s} =$ 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.

132 data tables

The normalized distribution of the characteristic variable $R_{\text{T}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.

The normalized distribution of the characteristic variable $\Delta\phi_{\text{min}}$ for the simulated SM backgrounds and several signal models. The requirement on this variable is omitted, but all other preselection requirements are applied. The last bin of each histogram includes the overflow events.

The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^\pm W^\mp$ or $ZZ$ in fully hadronic final states from $\sqrt{s}=13$ TeV $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 126 (2021) 121802, 2021.
Inspire Record 1822529 DOI 10.17182/hepdata.97191

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

13 data tables

Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.

Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

The ratios (&mu;) of the 95&#37; C.L. upper limits on the combined s&rarr; W<sup>&plusmn;</sup>W<sup>&#8723;</sup> and s&rarr; ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.

More…