We present results from the measurement of the inclusive jet cross section for jet transverse energies from 40 to 465 GeV in the pseudo-rapidity range $0.1<|\eta|<0.7$. The results are based on 87 $pb^{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron Collider. The data are consistent with previously published results. The data are also consistent with QCD predictions given the flexibility allowed from current knowledge of the proton parton distributions. We develop a new procedure for ranking the agreement of the parton distributions with data and find that the data are best described by QCD predictions using the parton distribution functions which have a large gluon contribution at high $E_T$ (CTEQ4HJ).
The inclusive jet cross section. Statistical errors shown. The systematic errors are given in the html link above.
We update the measurement of the top production cross section using the CDF detector at the Fermilab Tevatron. This measurement uses $t\bar{t}$ decays to the final states $e+\nu$+jets and $\mu+\nu$+jets. We search for $b$ quarks from $t$ decays via secondary-vertex identification or the identification of semileptonic decays of the $b$ and cascade $c$ quarks. The background to the $t\bar{t}$ production is determined primarily through a Monte Carlo simulation. However, we calibrate the simulation and evaluate its uncertainty using several independent data samples. For a top mass of 175 $GeV/c^2$, we measure $\sigma_{t\bar{t}}=5.1 \pm 1.5$ pb and $\sigma_{t\bar{t}}=9.2 \pm 4.3$ pb using the secondary vertex and the lepton tagging algorithms, respectively. Finally, we combine these results with those from other $t\bar{t}$ decay channels and obtain $\sigma_{t\bar{t}} = 6.5^{+1.7}_{-1.4}$ pb.
Cross sections from the SVX (secondary vertex), SLT (soft lepton tag), dilepton and all hadronic analyses. See text of article for details. Errors contain both statistics and systematics.
The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron Tile Calorimeter at the CERN SPS. The differential probability
The measured differential probability values DPROB/DNU. The errors are statistical only.
The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest nu_e beam at the Los Alamos Neutron Science Center. The standard model of electroweak physics predicts a large destructive interference between the charge current and neutral current channels for this reaction. The measured cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e} (MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +- 0.12(syst.), is in good agreement with the standard model expectation of I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents. An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr} is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.
No description provided.
No description provided.
We have measured the cross section of the 7Be(p,gamma)8B reaction for E_cm = 185.8 keV, 134.7 keV and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta^+ and alpha particles from 8B and 8Be^* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5 +/- 2.4 eV b and a weighted mean value of 18.8 +/- 1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.
CONST = E**2*Z1*Z2*/(V), where Z1 and Z2 are the nuclear charges of the interacting particles. The extrapolation to Ecm = 0.0. The statistical and systematic error are combined in quadrature. The last value (P=0) is results of averaging with previous data.
The process e^+e^- -> Z gamma gamma -> q q~ gamma gamma is studied in 0.5 fb-1 of data collected with the L3 detector at centre-of-mass energies between 130.1 GeV and 201.7 GeV. Cross sections are measured and found to be consistent with the Standard Model expectations. The study of the least energetic photon constrains the quartic gauge boson couplings to -0.008 GeV-2 < a_0/\Lambda^2 < 0.005 GeV-2 and -0.007 GeV-2 < a_c/\Lambda^2 < 0.011 GeV-2, at 95% confidence level.
No description provided.
The results are presented for more more restrictive phase space.
CONST(NAME=LAMBDA_NEW) is New Physics scale. COUPLING(NAME=A0,AC) are quartic gauge boson couplings of the effective Lagrangians (see paper for details).
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.
Using 13.6/fb of continuum two-jet e+e- -> ccbar events collected with the CLEO detector, we have searched for baryon number correlations at the primary quark level. We have measured the likelihood for a /\c+ charmed baryon to be produced in the hemisphere opposite a /\c- relative to the likelihood for a /\c+ charmed baryon to be produced opposite an anticharmed meson Dbar; in all cases, the reconstructed hadrons must have momentum greater than 2.3 GeV/c. We find that, given a /\c- (reconstructed in five different decay modes), a /\c+ is observed in the opposite hemisphere (0.72+/-0.11)% of the time (not corrected for efficiency). By contrast, given a Dbar in one hemisphere, a /\c+ is observed in the opposite hemisphere only (0.21+/-0.02)% of the time. Normalized to the total number of either /\c- or Dbar ``tags'', it is therefore 3.52+/-0.45+/-0.42 times more likely to find a /\c+ opposite a /\c- than a Dbar meson. This enhancement is not observed in the JETSET 7.3 e+e- -> ccbar Monte Carlo simulation.
Statistal errors only.
Statistal errors only.
Statistal errors only.
A new precise measurement of |V_{cb}| and of the branching ratio BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}) has been performed using a sample of about 5000 semileptonic decays \bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell}, selected by the DELPHI detector at LEP I by tagging the soft pion from D^{*+} -> D^0 \pi^+. The results are: V_{cb}=(39.0 +/- 1.5 (stat.) ^{+2.5}_{-2.6} (syst. exp.) +/- 1.3 (syst. th.)) x 10^{-3} BR(\bar{B^0} -> D^{*+} \ell^- \bar{\nu_\ell})=(4.70 +/- 0.13 (stat.) ^{+0.36}_{-0.31} (syst. exp.))% The analytic dependences of the differential cross-section and of the Isgur Wise form factor as functions of the variable w = v_{B^0}.v_{D^*} have also been obtained by unfolding the experimental resolution.
The formfactors are evaluated at zero recoil of D meson. VCB is the V-CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix element. The value of FORMFACTOR(1) = 0.91 +- 0.03.
Measurements of the trilinear gauge boson couplings WWgamma and WWZ are presented using the data taken by DELPHI in 1998 at a centre-of-mass energy of 189 GeV and combined with DELPHI data at 183 GeV. Values are determined for Delta(g_1^Z) and Delta(kappa_gamma), the differences of the WWZ charge coupling and of the WWgamma dipole coupling from their Standard Model values, and for lambda_gamma, the WWgamma quadrupole coupling. A measurement of the magnetic dipole and electric quadrupole moment of the W is extracted from the results for Delta(kappa_gamma) and lambda_gamma. The study uses data from the final states jjlv, jjjj, lX, jjX and gammaX, where j represents a quark jet, l an identified lepton and X missing four-momentum. The observations are consistent with the predictions of the Standard Model.
No description provided.