Measurements of the suppression of the yield per nucleon of J/Psi and Psi' production for 800 GeV/c protons incident on heavy relative to light nuclear targets have been made with very broad coverage in xF and pT. The observed suppression is smallest at xF values of 0.25 and below and increases at larger values of xF. It is also strongest at small pT. Substantial differences between the Psi' and J/Psi are observed for the first time in p-A collisions. The suppression for the Psi' is stronger than that for the J/Psi for xF near zero, but becomes comparable to that for the J/Psi for xF > 0.6.
Target Atomic Mass dependence expressed as the POWER for J/PSI production. X2 is the momentum fraction of the struck quark.
Target Atomic Mass dependence expressed as the POWER for PSIPRIME production. X2 is the momentum fraction of the struck quark.
PT dependence of ALPHA for J/PSI and PSIPRIME production for the small-XF dataset.
The cross sections for the hadroproduction of the Chi1 and Chi2 states of charmonium in proton-silicon collisions at sqrt{s}=38.8 GeV have been measured in Fermilab fixed target Experiment 771. The Chi states were observed via their radiative decay to J/psi+gamma, where the photon converted to e+e- in the material of the spectrometer. The measured values for the Chi1 and Chi2 cross sections for x_F>0 are 263+-69(stat)+-32(syst) and 498+-143(stat)+-67(syst) nb per nucleon respectively. The resulting sigma(Chi1}/sigma(Chi2) ratio of 0.53+-0.20(stat)+-0.07(syst), although somewhat larger than most theoretical expectations, can be accomodated by the latest theoretical estimates.
No description provided.
The transverse momentum and total cross section of e^+e^- pairs in the Z-boson region of 66<M_{ee}<116 GeV$/c^2$ from $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV are measured using 110 pb^{-1} of collisions taken by the Collider Detector at Fermilab during 1992-1995. The total cross section is measured to be $248 \pm 11$ pb. The differential transverse momentum cross section is compared with calculations that match quantum chromodynamics perturbation theory at high transverse momentum with the gluon resummation formalism at low transverse momentum.
The measured transverse momentum distribution of e+e- pairs in the Z0 bosonregion. PT is the centre of the bins.
The total cross section for e+e- pair production in the Z0 region. The mainerror is the statistical and efficiency error, the first DSYS error is the syst ematic error from the background subtractions and the second DSYS error is from the collision luminosity.
The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.
The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.
The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
New results of the neutron-proton spin-dependent total cross section difference$\Delta\sigma_L(np)$at the neutron beam kinetic energies 1.59, 1.79 and 2.20 GeV ar
Final results from the np data.
Values of the cross section difference at I=0 deduced by combining these npdata with pure pp (I=1) data from other experiments.
The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.
The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.
The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.
The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.
The pair production of Z bosons is studied using the data collected by the L3 detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189 GeV. All the visible final states are considered and the cross section of this process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final states containing b quarks are enhanced by a dedicated selection and their production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02 (syst.) pb. Both results are in agreement with the Standard Model predictions. Limits on anomalous couplings between neutral gauge bosons are derived from these measurements.
The total cross section. Also given is the NC02 cross section in which only two conversion diagrams are considered.
Cross section for the individual decay channels.
Cross section for b-quark production.
Inclusive production of $\mathrm{D^{*\pm}}$ mesons in two-photon collisions was measured by the L3 experiment at LEP. The data were collected at a centre-of-mass energy $\sqrt{s} = 189$ GeV with an integrated luminosity of $176.4 \mathrm{pb^{-1}}$. Differential cross sections of the process $\mathrm{e^+e^- \to D^{*\pm} X}$ are determined as functions of the transverse momentum and pseudorapidity of the $\mathrm{D^{*\pm}}$ mesons in the kinematic region 1 GeV $< p_{T}^{\mathrm{D^*}} < 5 $ GeV and $\mathrm{|\eta^{D^*}|} < 1.4$. The cross section integrated over this phase space domain is measured to be $132 \pm 22(stat.) \pm 26(syst.)$ pb. The differential cross sections are compared with next-to-leading order perturbative QCD calculations.
The measured cross sections, as a function of PT over the bin ranges and the differential cross sections after bin-centre corrections.
The measured cross sections, as a function of pseudorapidity over the bin ranges and the differential cross sections after bin-centre corrections.
Integrated cross section in the visible kinematic region.
The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.
Inverse slope paramters of the (1/MT)*DN/DMT distribution.
Rapidity distributions for K+ and K- production.. Statistical and systematic errors added in quadrature.
Rapidity distributions for PI+ and PI- production.. Statistical and systematic errors added in quadrature.
Differential cross sections and beam asymmetries for coherent \pi^\circ photoproduction from ^4He in the \Delta energy-range have been measured with high statistical and systematic precisions using both decay photons for identifying the process.The experiment was performed at the MAinz MIcrotron using the TAPS photon spectrometer and the Glasgow/Mainz tagged photon facility. The differential cross sections are in excellent agreement with predictions based on the DWIA if an appropriate parametrization of the \Delta-nuclear interaction is applied. The beam asymmetries are interpreted in terms of degrees of linear polarization of collimated coherent bremsstrahlung. The expected increase of the degree of linear polarization with decreasing collimation angle is confirmed. Agreement with calculations is obtained on a few-percent level of precision in the maxima of the coherent peaks.
Only statistical errors are presented.
Only statistical errors are presented.
Only statistical errors are presented.