An analysis of the Λ p p system produced forward in the reaction K p → Λ p p at 18.5 GeV/ c is presented. The data come from an experiment using the CERN Ω′ spectrometer. Structures are observed in the Λ p mass spectrum and in the double moments H LMlm describing the decay of the Λ p system and the subsequent Λ decay, for L ⩽ 8. A partial wave analysis interprets these structures as resonances of spin parities 2 − and 3 + , masses and widths M = 2200 ± 40 MeV, Γ = 150 ± 30 MeV and M = 2330 ± 40 MeV, Γ = 150 ± 30 MeV respectively.
UNCORRECTED DISTRIBUTION.
FULLY CORRECTED CROSS SECTION.
CROSS SECTIONS FOR RESONANCES. BREIT WIGNER FITTED WITH NO ADDITIONAL BACKGROUND.
Inclusive ϱ 0 meson production has been measured in 120 GeV and 280 GeV muon-proton interactions. Distributions of z and p T 2 are presented. Primary ϱ 0 production is found to be equal to that of π 0 production within errors.
No description provided.
No description provided.
Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.
No description provided.
The p p elastic differential cross section at 30 GeV/ c incident momentum has been measured in a two-arm spectrometer experiment (WA7) at the CERN SPS. The | t |-range covered extends from 0.5 to 5.8 (GeV/ c ) 2 . A pronounced dip-bump structure is observed, with a sharp minimum around | t | ≈ 1.7 (GeV/ c ) 2 . The results are compared with existing p p data at lower energies and with our earlier p p data at 50 GeV/ c . A number of model predictions are discussed. We also compare the p p 30 GeV/ c differential cross section with that of pp at the same momentum. Finally, the energy dependence of the p p fixed-| t | differential cross in the incident momentum range 3.6 to 50 GeV/ c is presented.
NUMERICAL VALUES SUPPLIED BY D. IMRIE. ERROR CONTAINS BOTH STATISTICS AND SYSTEMATICS.
A sample of 52 Intermediate Vector Boson decays in the ( v e e) channel is described. They were produced at the CERN SPS Collider for an integrated luminosity of 0.136 pb −1 . Both production and decay properties fit well with expectations from the Standard Model of weak interactions. An improved value for the W mass is given and compared with the previously published value for the Z 0 mass.
No description provided.
We have determined the cross section for γγ→π+π+π−π− in a way free of assumptions about the relative contributions fromρ0ρ0,ρ02π and 4π (uncorrelated phase space). We find a sharp onset above threshold and a rather high cross section of about 200 nb aroundWγγ=1.5 GeV which consists to about 40% ofρ0ρ0 production with sizeable contributions fromρ02π and 4π (PS). The total cross section as well as theρ0ρ0 content fall rather fast at higher c.m. energies. Attempts to explain this behaviour in terms of production of known resonances are not successful so far. The angular distributions do not show any significant structure pointing to resonance formation in the 4π-system. Only theρ0-meson is observed in the moment analysis. The decay distributions of theρ0 for forward produced rhos are fairly consistent with helicity conservation of the produced rhos in accordance with the VDM picture.
No description provided.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO RHO RHO, RHO 2PI, AND 4PI(PHASE SPACE) USING TWO WIDE W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO THE RHO RHO, RHO PI, AND 4PI (PHASE SPACE) USING SMALL W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
None
ASSUMING ABS(GE)=ABS(GM).
No description provided.
No description provided.
Using BEBC equipped with a hydrogen-filled neon-surrounded track-sensitive target, the charged current cross sections and structure functions of hydrogen and neon targets traversed by the same neutrinos and antineutrinos are compared directly. The measured total cross-section ratios between hydrogen and neon allow precise total cross-section values for hydrogen to be inferred. Using this normalization, the ν and ν hydrogen data are combined and the quark distributions in free nucleons, parametrised as functions of ξ, are extracted. This free-nucleon parametrisation is then compared directly with the neon data in order to measure nuclear effects such as those recently reported by the EMC collaboration. Only small effects are seen, in excellent agreement with recent SLAC data in a more similar A and q 2 range.
Measured charged current total cross section.
Measured charged current total cross section.
AVERAGE Q**2 IS 6.9GEV**2 FOR NU AND 4.3GEV**2 FOR ANU.
We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.
No description provided.
No description provided.
No description provided.
The production and properties of high transverse momentum hadron jets have been measured in the UA2 experiment at the CERN\(\bar pp\) Collider\((\sqrt s= 540 GEV)\) using a highly segmented total absorption calorimeter. The characteristics of a sample of two-jet events with invariant mass up to 200 GeV/c2 are discussed, including measurements of their fragmentation properties, angular and rapidity distributions, and the properties of the additional energy clusters accompanying the two-jet system. Cross sections for inclusive jet production in the jet transverse momentum range between 30 and 100 GeV/c and for the two-jet invariant mass distribution in the mass range from 60–200 GeV/c2 are reported.
No description provided.