We have measured inclusive γ and π0 production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 4.9 to 7.4 GeV. We find the π0 inclusive cross section to be consistent in shape and normalization with half the charged-π cross section between x=0.15 and 0.60, with an integrated inclusive cross-section ratio of σ(π0)|σ(π+)+σ(π−)|=0.47±0.10.
NUMERICAL VALUES OF DATA FROM THIS EXPERIMENT HAVE NOT BEEN KEPT (M. L. PERL, PRIV COMM, 3 MAY 1979).
The measurement of the proton-proton total cross section performed by the CERN-Pisa-Rome-Stony Brook Collaboration at the CERN ISR is discussed in detail. The total interaction rate, the elastic scattering rate in the forward direction, and the machine luminosity were measured simultaneously to obtain three different determinations of the total cross section. Consistent results were found, which made it possible to prove the reliability of the Van der Meer luminosity calibration within +-0.9% and to achieve a precision of +-0.6% in the measurement of the total cross section.
No description provided.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
No description provided.
No description provided.
We have measured in a single experimental setup the differential cross sections and polarizations of the Y*(1385) produced in the two line-reversed reactions π+p→K+Y*(1385) (260 eV/μb) and K−p→π−Y*(1385) (180 eV/μb) at 11.5 GeV/c. We compare these results to Σ+ production in the same experiment. The data have been derived from a triggered bubble-chamber experiment using the SLAC Hybrid Facility. We find that both helicity-flip-dominated (Y*) and helicity-nonflip-dominated (Σ) processes are consistent with weak-exchange-degeneracy predictions.
Axis error includes +- 10/10 contribution.
Axis error includes +- 10/10 contribution.
Axis error includes +- 10/10 contribution.
We have measured inclusive electron production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 3.9-7.4 GeV. We find the electron momentum spectra are consistent with the electrons coming mainly from decays of charmed particles, with a smaller contribution from decays of the τ lepton. From our data we calculate the average branching ratio for charmed particles to decay into an electron plus additional particles to be (8.2±1.9)%.
No description provided.
Measurements are presented of the inclusive π 0 production cross section, in the transverse momentum range 2.3 ⪅ p T ⪅4.5 GeV/c, for dd and dp interactions at total c.m. energies of √ s = 52.7 GeV and √ s = 63.2 GeV and for pp interactions at √ s = 52.7 GeV. The produced π 0 's are detected by identifying both protons from the decay π 0 → γγ . As in pp interactions, the data can be adequately described by a p T −n ƒ(x T ) dependence with n ≌ 8 . The data are approximately consistent with the expectations of free nucleon scattering. No significant differenceare observed in either the charged or the neutral particle distributions associated with π 0 , for dd, dp and pp interactions.
GLOBAL NORMALIZATION UNCERTAINTY = 12 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 5 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 10 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 6 PCT.
GLOBAL NORMALIZATION UNCERTAINTY = 15 PCT. RELATIVE NORMALIZATION UNCERTAINTY = 7 PCT.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
No description provided.
No description provided.
None
OVERALL NORMALIZATION ERROR NOT INCLUDED. -TMIN IS 0.015 (0.023) GEV**2 FOR THE LAMBDA (SIGMA0) REACTION.
INCLUDING NORMALIZATION UNCERTAINTY IN ERRORS. USING EMPIRICAL FITS TO D(SIG)/DT FOR -T > 1.0 GEV**2.
No description provided.
Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.
No description provided.
No description provided.
FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.
Proton elastic scattering off a polarized proton target has been measured at 150 GeV/ c , in the |; t |-range 0.2–3.0 GeV 2 . The results on polarization and differential cross section are presented.
No description provided.
No description provided.