Showing 10 of 94 results
The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the transverse momentum of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the longitudinal boost of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded inclusive leptonic asymmetry. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the invariant mass of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the transverse momentum of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
The unfolded differential leptonic asymmetry as a function of the longitudinal boost of the di-lepton pair. The unfolded $A_C^{\ell\bar{\ell}}$ is obtained in the reduced phase-space defined by the requirement $|\Delta |\eta_{\ell\bar{\ell}}||<2.5$. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NLO in QCD and NLO in EW theory are listed. The theory uncertainty is obtained by varying both scales by a factor of 0.5 or 2.0 to calculate the minimum and maximum value of the asymmetry, respectively.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ inclusive measurement. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0,0.3]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.3,0.6]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.6,0.8]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$ measurement for $\beta_{z,t\bar{t}}$ $\in$ [0.8,1]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ < 500 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [500,750] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [750,1000] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ $\in$ [1000,1500] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$ measurement for $m_{t\bar{t}}$ > 1500 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ < 30 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ $\in$ [30,120] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$ measurement for $p_{T,t\bar{t}}$ > 120 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ inclusive measurement. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0,0.3]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.3,0.6]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.6,0.8]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $\beta_{z,\ell\bar{\ell}}$ measurement for $\beta_{z,\ell\bar{\ell}}$ $\in$[0.8,1]. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ < 200 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ $\in$ [200,300] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ $\in$ [300,400] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $m_{\ell\bar{\ell}}$ measurement for $m_{\ell\bar{\ell}}$ > 400 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ < 20 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ $\in$ [20, 70] GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Ranking of the systematic uncertainties with marginalisation for the $A_C^{\ell\ell}$ vs $p_{T,\ell\bar{\ell}}$ measurement for $p_{T,\ell\bar{\ell}}$ > 70 GeV. The effect on unfolded $A_C$ for down and up variation of the systematic uncertainty is shown, respectively. The pulls and constraints of the ranked NPs are obtained from data.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute normalized cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at parton level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}| $normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
Longitudinal profile for 50 GeV < pT < 70 GeV.
Transverse profile for 50 GeV < pT < 70 GeV.
Longitudinal profile for 70 GeV < pT < 100 GeV.
Transverse profile for 70 GeV < pT < 100 GeV.
Longitudinal profile for pT > 100 GeV.
Transverse profile for pT > 100 GeV.
Average longitudinal profile
Transverse profile for pT > 100 GeV.
This paper presents a measurement of the electroweak production of two jets in association with a $Z\gamma$ pair, with the $Z$ boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $Z\gamma$ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. An observed (expected) upper limit of 0.37 ($0.34^{+0.15}_{-0.10}$) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ($0.017^{+0.007}_{-0.005}$), assuming the Standard Model production cross-section for a 125 GeV Higgs boson.
Post-fit results for all $m_\text{jj}$ SR and CR bins in the EW $Z \gamma + \text{jets}$ cross-section measurement with the $\mu_{Z \gamma_\text{EW}}$ signal normalization floating. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit results for all DNN SR and CR bins in the search for $H \to \text{inv.}$ with the $\mathcal{B}_\text{inv}$ signal normalization set to zero. For the $Z_\text{Rev.Cen.}^\gamma$ CR, the third bin contains all events with DNN output score values of 0.6-1.0. The $H \to \text{inv.}$ signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit results for the ten [$m_\text{jj}$, $m_\text{T}$] bins constituting the SR and CRs defined for the dark photon search with the $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ signal is shown for two different mass hypotheses (125 GeV, 500 GeV) and scaled to a branching ratio of 2% and 1%, respectively. The post-fit uncertainties include statistical, experimental, and theoretical contributions.
Post-fit $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ distribution in the inclusive signal region for the dark-photon search with the 125 GeV mass $\mathcal{B}(H \to \gamma \gamma_\text{d})$ signal normalization set to zero. A $H \to \gamma \gamma_\text{d}$ decay signal is shown for two different mass hypotheses, 125 GeV and 500 GeV, and scaled to a $\mathcal{B}(H \to \gamma \gamma_\text{d})$ of 2% and 1%, respectively. Events with $m_\text{T}(\gamma, E_\text{T}^\text{miss})$ larger than the rightmost bin boundary are added to that bin.
The 95% CL upper limit on the Higgs boson production cross-section times branching ratio to $\gamma \gamma_\text{d}$ is shown for different VBF-produced scalar-mediator-mass hypotheses in the NWA. The theoretically predicted cross-section of a Higgs boson produced via VBF and with the $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 5% is superimposed on the $\pm 1\sigma$ and $\pm 2\sigma$ NNLO QCD + NLO EW uncertainty band of the expected production cross-section limit.
Post-fit $m_\text{jj}$ distribution in the inclusive signal region. The Higgs boson invisible decay signal is scaled to a $\mathcal{B}_\text{inv}$ of 37%. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{jj}$ distribution in the one-lepton control region $W_{\ell \nu}^\gamma$ CR. Events with $m_\text{jj}$ larger than the rightmost bin boundary are added to that bin.
Post-fit $m_\text{T}$ distribution in the one lepton control region. Events with $m_\text{T}$ larger than the rightmost bin boundary are added to that bin.
Post-fit photon centrality distribution in the zero lepton signal plus control region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region with the $\mathcal{B}_\text{inv}$ signal normalization set to zero in the fit.
Post-fit photon centrality distribution in the zero lepton signal plus control region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit photon $E_\text{T}$ distribution in the zero lepton signal region resulting from the fit to the $m_\text{jj}$ distribution for EW $Z \gamma + \text{jets}$. The post-fit uncertainties include statistical, experimental, and theory contributions.
Post-fit DNN output score distribution in the one lepton control region.
Yields for the EW $Z \gamma + \text{jets}$ process are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}_\text{inv.} =$ 1 signal produced by the vector boson fusion process in association with a final state photon are shown after each selection along with relative and absolute signal acceptance efficiencies.
Yields for the 125 GeV Higgs boson with $\mathcal{B}(H \to \gamma \gamma_\text{d}) =$ 1 signal produced by the vector boson fusion process are shown after each selection along with relative and absolute signal acceptance efficiencies.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.
Distribution of the dijet invariant mass in CRZ. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in VRMET. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the missing transverse energy in CRTop. The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Distribution of the dijet invariant mass in the signal region, shown together with the parameterized background model (labelled "Bkg Model"). For reference, the MC prediction for the SM background is also shown (labelled "SM MC"). The Z+HF and $t\bar{t}$ scale factors, described in the text, have been applied to the simulated samples. The signal region is defined to have dijet invariant mass > 20 GeV. The distribution labeled "Signal" is for the model with ($m_a$, $m_{\tilde{\chi}_{1}^{0}}$, $m_{\tilde{\chi}_{2}^{0}}$) = (45 GeV, 10 GeV, 80 GeV).
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu\; \mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the $pp \rightarrow ZH$ cross section times the branching ratio for $Z \rightarrow \ell^{+}\ell^{-}$ (where $\ell = e, \mu \;\mathrm{or}\; \tau$) and $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. All branching ratios in the Higgs boson decay chain after the decay $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0}$ are set to 100%.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 65$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 95$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 10$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 110$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 20$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Upper limits at 95% CL on the branching ratio $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ as a function of $m_{a}$ for $m_{\tilde{\chi}_{1}^{0}} = 30$ GeV and $m_{\tilde{\chi}_{2}^{0}} = 80$ GeV in the NMSSM scenario described in the text. The SM $ZH$ cross section is assumed.
Unweighted and weighted number of events after each stage of selection for the NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}) = (45,10,80)$ GeV and the Z boson decaying to $e^{+}e^{-}, \;\mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The weighted number of events corresponds to an integrated luminosity of $139 \;\mathrm{fb}^{-1}$. The "skimming selection" required either a single electron or muon with $p_{T} > 100\;$ GeV or a pair of electrons or muons each with $p_{T} > 20\;$ GeV. The preselection requirements include the trigger, absence of a bad jet or bad muon, and two leptons, where a lepton is either an electron or a muon.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
Acceptance and efficiency of this analysis for the signal models considered in this paper. The signal is an NMSSM scenario with $pp \rightarrow ZH$, $Z \rightarrow \ell^{+}\ell^{-}$, $H \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{0} \rightarrow a \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow b\bar{b} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ where the values of $(m_{a}, m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}})$ are varied. The Z boson decays to $e^{+}e^{-}, \mu^{+}\mu^{-} \;\mathrm{or}\; \tau^{+}\tau^{-}$. All branching ratios in the Higgs boson decay chain are set to 100%. The product of acceptance times efficiency is defined by the fraction of simulated events that pass all the selection criteria of this analysis. The acceptance is defined by the fraction of simulated events that pass all the selection criteria as applied to Monte Carlo truth-level quantities. The efficiency is then defined as the acceptance times efficiency, divided by the acceptance.
A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 16$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 25$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 35$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 45$ GeV.
95% CL exclusion limits on $\mathcal{B}(H\rightarrow aa \rightarrow b\bar{b}b\bar{b})$ for $m_a = 55$ GeV.
The fraction of $a$ boson decays matched to reconstructed displaced vertices passing all vertex selections in signal MC.
The extrapolated signal selection efficiency as a function of $c\tau_{a}$.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
Observed 95% CL exclusion limit for the Zprime-2HDM model.
Expected 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model.
Observed 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model ggF production.
Observed 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 1 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Expected +- 2 sigma 95% CL exclusion limit for the 2HDM+a model bbA production.
Observed 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 1 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected +- 2 sigma 95% CL exclusion limit for the Zprime-2HDM model with the benchmark used in arXiv:1707.01302.
Expected and observed upper limits at 95% CL on cross-section for Zprime-2HDM model.
Expected and observed upper limits at 95% CL on cross-section for ggF producton in the 2HDM+a model.
Expected and observed upper limits at 95% CL on cross-section for bbA producton in the 2HDM+a model.
Model-independent upper limits on the visible cross-section $σ_{vis, $h(\bar{b})+DM} ≡ σ_{h+DM} \times B(h \to b\bar{b}) \times \mathcal{A} \times \epsilon$ in the different signal regions.
Distribution of Higgs boson candidate mass in 2b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET=500-750 GeV.
Distribution of Higgs boson candidate mass in 2b region with MET > 750 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=150-200 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=200-350 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET=350-500 GeV.
Distribution of Higgs boson candidate mass in 3b region with MET > 500 GeV.
Yields in 1-lepton control region.
Yields in 2-lepton control region.
MET distribution in 2b region of the 0-lepton channel.
MET distribution in 3b region of the 0-lepton channel.
Expected signal yields after certain selection cuts in 2b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 2b region with MET=500-750 GeV.
Expected signal yields after certain selection cuts in 2b region with MET > 750 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=150-200 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=200-350 GeV.
Expected signal yields after certain selection cuts in 3b region with MET=350-500 GeV.
Expected signal yields after certain selection cuts in 3b region with MET > 500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for bbA production in the 2HDM+a model - 3b region with MET>500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the 2HDM+a model - 3b region with MET > 500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET=500-750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 2b region with MET > 750 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=150-200 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=200-350 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET=350-500 GeV.
Acceptance times efficiency for ggF production in the Zprime-2HDM model - 3b region with MET > 500 GeV.
A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.
Differential cross section as a function of $p_{T,\gamma_{1}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $p_{T,\gamma_{2}}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Integrated fiducial cross section measured in data and from different predictions.
Differential cross section as a function of $m_{\gamma\gamma}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $p_{T,\gamma\gamma}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $a_{T,\gamma\gamma}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $\phi_{\eta}*$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $\pi-\Delta\phi_{\gamma\gamma}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
Differential cross section as a function of $|cos\theta*|^{(CS)}$. The table contains the values measured in data and theory predictions from SHERPA, DIPHOX and NNLOJET.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.