Showing 3 of 3 results
The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75-9.00 TeV. The results provide the first mass limits on a right-handed boson Z$_{\mathrm{R}}$ decaying to three gluons and on an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.
Observed and expected (background-only fitted) invariant mass spectra of trijet events. Data spectra from three years are fitted separately and the sum is shown in the figure. The fitting function used is ${ d N}/{ d m} = p_{0}(1-x)^{p_{1}}/x^{\sum_{i=2}^{3} p_{i}\log^{i-2}(x)}$. The fitted parameters are $p_{1} = 7.350, p_{2} = 6.926, p_{3} = 0.388$ for 2016, $p_{1} = 8.308, p_{2} = 5.931, p_{3} = 0.167$ for 2017 and $p_{1} = 8.770, p_{2} = 5.617, p_{3} = 0.106$ for 2018. $p_{0}$ is the normalization parameter and its exact value is irrelevant.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 3\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions assuming SM-like couplings are depicted with the red curve.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to ggg) \mathcal{A}$ for a 3-body decay trijet resonance with $\Gamma_{X}\sim 0.01\% m_{X}$. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions are depicted with the red curve.
Observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Mass exclusion ranges of the benchmark signal scenarios are depicted with hatched areas inside the black contours.
Observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance. The acceptance $\mathcal{A}$ is defined as $\mathcal{A} = N$(events with $m_{X}^{GEN} > 85\% m_{X}^{input}$) / $N$(events generated in the full phase space defined by the CMS default generator settings). Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Mass exclusion ranges of the benchmark signal scenarios are depicted with hatched areas inside the black contours.
Efficiencies of the selection requirements on the benchmark signal processes: $Z_{R} \to ggg$ with nominal width ($\Gamma_{X}/m_{X}\sim 3\%$). A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $Z_{R} \to ggg$ with narrow width ($\Gamma_{X}/m_{X}\sim 0.01\%$). A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $G_{KK} \to {\varphi}(gg)g$, where $\varphi$ is the radion. A value of -1 means that the corresponding efficiency is not calculated for this year.
Efficiencies of the selection requirements on the benchmark signal processes: $q^{*} \to V(qq)q$, where $V$ is a beyond-the-SM vector boson. A value of -1 means that the corresponding efficiency is not calculated for this year.
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $Z_{R} \to ggg$. The acceptance is defined as $\mathcal{A} = N$(events with $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$)/$N$(events generated in the full phase space defined by the CMS default generator settings).
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $G_{KK} \to {\varphi}(gg)g$.
Acceptance of the signal selection requirement $m_{X}^{\text{GEN}}/m_{X}^{\text{input}} > 85\%$ on the benchmark signal process $q^{*} \to V(qq)q$.
Observed local significance for a 3-body decay $ggg$ resonance, shown for resonances with nominal width (blue solid line) and narrow width (red dashed line).
Observed local significance for a cascade decay $ggg$ resonance.
Observed local significance for a cascade decay $qqq$ resonance.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.2$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.3$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.4$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.5$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.6$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.7$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(gg)g) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.8$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance $m_{Y} / m_{X} = 0.2$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.3$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.4$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.5$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.6$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.7$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal.
Expected and observed limits at 95% CL on $\sigma \mathcal{B} (X \to Y(qq)q) \mathcal{A}$ for a cascade decay trijet resonance with $m_{Y} / m_{X} = 0.8$. Only 2016 data are used to derive limits below 2.0 TeV because of higher trigger thresholds in 2017 and 2018. Theoretical predictions of the benchmark are depicted with the red curve. A value of -1 in the table means that the corresponding theoretical prediction is not calculated for this signal
Cut flow table of the selection requirments for the $Z_{R}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Cut flow table of the selection requirments for the $G_{KK}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Cut flow table of the selection requirments for the $q^{*}$ model scenarios. Values shown are absolute efficiencies, e.g., values shown in the column of 'Efficiency ($\Delta_{R}^{max} < 3.0$)' represent the cumulative efficiencies achieved through all selection requirements applied up to and including the current selection criterion.
Predicted production cross section of the benchmark signal process $pp \to Z_{R} \to ggg$.
Predicted production cross section of the benchmark signal process $pp \to G_{KK} \to \varphi(gg)g$.
Predicted production cross section of the benchmark signal process $pp \to q^{*} \to V(qq)q$.
An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at $\sqrt{s}$ = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb$^{-1}$. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred $\mu$m to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons Z$_\mathrm{D}$, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with $m_\mathrm{Z_D}$ greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for $c\tau$(Z$_\mathrm{D}$) (varying with $m_\mathrm{Z_D}$) between 0.03 and ${\approx}$ 0.5 mm, and above ${\approx}$ 0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2016 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 33$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Level-1 muon trigger efficiency in cosmic-ray muon data (blue) and signal simulation (red) as a function of $d_0$, for the Level-1 trigger $p_T$ threshold used in the 2018 analysis triggers. The denominator in the efficiency calculation is the number of STA muons with $|\eta| < 1.2$ and $p_T > 28$ GeV.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Fractions of signal events with zero (green), one (blue), and two (red) STA muons matched to TMS muons by the STA-to-TMS muon association procedure, as a function of true $L_{xy}$, in all simulated $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal samples combined. The fractions are computed relative to the number of signal events passing the trigger and containing two STA muons with more than 12 muon detector hits and $p_T > 10$ GeV matched to generated muons from $X \rightarrow \mu \mu$ decays.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-STA dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2018 data in the STA-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 30 and 60 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legends also include the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{\mu \mu}$ intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $6 < min(d_0 / \sigma_{d_0}) \leq 10$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $10 < min(d_0 / \sigma_{d_0}) \leq 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, in representative $m_{\mu \mu}$ intervals in the $min(d_0 / \sigma_{d_0}) > 20$ bin. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility. The legend also includes the total number of observed events as well as the number of expected background events obtained inclusively, by applying the background evaluation method to the events in all $m_{Z_D}$ and min($d_0 / \sigma_{d_0}$) intervals combined.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2016 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
Comparison of the number of events observed in 2018 data in the TMS-TMS dimuon category with the expected number of background events, as a function of the smaller of the two $d_0 / \sigma_{d_0}$ values in the TMS-TMS dimuon. The black points with crosses show the number of observed events; the green and yellow components of the stacked histograms represent the estimated numbers of DY and QCD events, respectively. The last bin includes events in the overflow. The uncertainties in the total expected background (shaded area) are statistical only. Signal contributions expected from simulated $H \rightarrow Z_D Z_D$ with $m_{Z_D}$ of 20 and 50 GeV are shown in red and blue, respectively. Their yields are set to the corresponding combined median expected exclusion limits at 95% CL, scaled up as indicated in the legend to improve visibility.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(\Phi \rightarrow XX)B(X \rightarrow \mu \mu)$ as a function of $c\tau(X)$ in the heavy-scalar model, for $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 10\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 20\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 30\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 40\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 50\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
The 95% CL upper limits on $\sigma(H \rightarrow Z_DZ_D)B(Z_D \rightarrow \mu \mu)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m_{Z_D} = 60\ GeV$. The median expected limits obtained from the STA-STA, STA-TMS, and TMS-TMS dimuon categories are shown as dashed green, blue, and red curves, respectively; the combined median expected limits are shown as dashed black curves; the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits. The horizontal lines in gray correspond to the theoretical predictions for values of $B(H \rightarrow Z_DZ_D)$ indicated next to the lines.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $c\tau(Z_D)$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Observed 95% CL exclusion contours in the HAHM model, in the ($m(Z_D)$, $\epsilon$) plane. The contours correspond to several representative values of $B(H \rightarrow Z_DZ_D$) ranging from 0.005 to 1%.
Background estimation and observed number of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-STA dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Background estimation and observed number of events in the TMS-TMS dimuon category in 2016 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Background estimation and observed number of events in the TMS-TMS dimuon category in 2018 data. The mass interval is followed by the estimated and observed counts within each $min(d_0 / \sigma_{d_0})$ bin in this mass interval. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the TMS-TMS dimuon category in 2016 data. For each mass interval, the table shows the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ in each of the three $\text{min}(d_0 / \sigma_{d_0})$ bins. The quoted uncertainties are statistical only
Correspondence between the mass intervals in the TMS-TMS category and the parameters of the simulated signal samples.
Correspondence between the probed LLP masses and the chosen mass intervals in the TMS-TMS category.
Background estimation and observed number of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown. The mass interval is followed by the estimated and observed counts for the given year. The quoted uncertainties are statistical only.
Background estimations and observed numbers of events in the STA-TMS dimuon category in 2016 and 2018 data. For each probed LLP mass, the chosen mass interval is shown, followed by the predicted background yield $N^\text{est}_\text{bkg}$ and the observed number of events $N^\text{obs}$ for the given year. The quoted uncertainties are statistical only.
Number of events passing consecutive sets of selection criteria for 2018 collision data and the signal process $\Phi(125) \rightarrow XX(20\ GeV, c\tau = 13\ cm) \rightarrow \mu\mu$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events, N(events), the event yields of the individual dimuon vertex categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are independently counted for each category.
Number of events passing consecutive sets of selection criteria, in 2018 data and in a sample of simulated $\Phi \rightarrow XX \rightarrow \mu\mu$ signal events with $m(H) = 125\ GeV$, $m(X) = 20\ GeV$, and $c\tau = 13\ cm$. Each row introduces a new criterion that is applied in addition to the selection of the previous row. In addition to the total number of events $N(\text{total})$, the event yields in the individual dimuon categories, STA-STA, TMS-TMS, and STA-TMS, are shown in separate columns for each data set. In these columns, events containing selected dimuons of different categories are counted independently for each category.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 125\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 200\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 400\ GeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 150\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 150\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1000\ GeV$ and $m(X) = 350\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $\Phi \rightarrow XX \rightarrow 4\mu$ signal process with $m(\Phi) = 1\ TeV$ and $m(X) = 350\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 10\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 20\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 30\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 40\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 50\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The figure shows efficiencies in the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well as the combined efficiency (black) calculated as the sum of the efficiencies of the individual categories. The signal efficiencies for the 2016 and 2018 datasets are shown as dashed and solid lines, respectively.
Overall signal efficiencies as a function of $c\tau$ for the $H \rightarrow Z_DZ_D \rightarrow \mu\mu + anything$ signal process with $m(H) = 125\ GeV$ and $m(Z_D) = 60\ GeV$. The plot shows efficiencies of the three dimuon categories, STA-STA (green), TMS-TMS (red), and STA-TMS (blue), as well the combined efficiency (black). Each efficiency is computed as the ratio of the number of simulated signal events in which at least one dimuon candidate of a given type (or any type for the combined efficiency) passes all selection criteria (including the trigger) to the total number of simulated signal events. All efficiencies are corrected by the data-to-simulation scale factors described in the paper. The efficiencies in the 2016 and 2018 data sets are shown as dashed and solid curves, respectively.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $L_{xy}^\mathrm{true} < 20\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $20\ cm < L_{xy}^\mathrm{true} < 70\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the TMS-TMS dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2016 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
Signal efficiencies as a function of the smaller of the two values of generated muon $p_T$ and $d_0$ in dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the $\Phi \rightarrow XX \rightarrow \mu\mu + anything$ signal model, in 2018 samples. The efficiency in each bin is computed as the ratio of the number of simulated signal dimuons in that bin that pass the trigger requirements and selection criteria applied in the STA-STA dimuon category to the total number of simulated signal dimuons in that bin and within the geometric acceptance. The geometric acceptance is defined as the generated longitudinal decay length $L_{z}$ smaller than $8\ m$ and $|\eta^\mathrm{true}|$ of both generated muons forming the dimuon smaller than 2.0. The efficiencies obtained from simulation were further corrected by the data-to-simulation scale factors described in the paper. Efficiencies for dimuons with $70\ cm < L_{xy}^\mathrm{true} < 320\ cm$ in the STA-TMS and TMS-TMS dimuon categories are equal to zero.
A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.
Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.
Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.
W tagging efficiency, averaged for different spin and width hypotheses. The Standard deviation shown below is the standard deviation between the W tagging efficiencies for different spin and width hypotheses.
Observed and expected (background-only fitted) invariant mass spectra of Wgamma events. The fitted function is ${ d N}/{ d m} = p_{0} * (m/\sqrt{s})^{p_{1} + p_{2} * \log(m/\sqrt{s}) + p_{3} * \log^{2}(m/\sqrt{s})}$
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow scalar Wgamma resonances. Limits are compared to predicted cross sections for the heavy scalar triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad scalar Wgamma resonances.
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow vector Wgamma resonances. Limits are compared to predicted cross sections for the heavy vector triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad vector Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction and signal acceptance for general Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction, signal acceptance and W tagging efficiency for general Jgamma resonances.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.