Showing 10 of 85 results
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
The observed $|\eta|$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Searches for new phenomena inspired by supersymmetry in final states containing an $e^+e^-$ or $\mu^+\mu^-$ pair, jets, and missing transverse momentum are presented. These searches make use of proton-proton collision data with an integrated luminosity of 139 $\text{fb}^{-1}$, collected during 2015-2018 at a centre-of-mass energy $\sqrt{s}=13 $TeV by the ATLAS detector at the Large Hadron Collider. Two searches target the pair production of charginos and neutralinos. One uses the recursive-jigsaw reconstruction technique to follow up on excesses observed in 36.1 $\text{fb}^{-1}$ of data, and the other uses conventional event variables. The third search targets pair production of coloured supersymmetric particles (squarks or gluinos) decaying through the next-to-lightest neutralino $(\tilde\chi_2^0)$ via a slepton $(\tilde\ell)$ or $Z$ boson into $\ell^+\ell^-\tilde\chi_1^0$, resulting in a kinematic endpoint or peak in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectations. Results are interpreted using simplified models and exclude masses up to 900 GeV for electroweakinos, 1550 GeV for squarks, and 2250 GeV for gluinos.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>EWK SR distributions:</b> <a href="116034?version=1&table=Figure 11a">SR-High_8-EWK</a>; <a href="116034?version=1&table=Figure 11b">SR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 11c">SR-Int-EWK</a>; <a href="116034?version=1&table=Figure 11d">SR-Low-EWK</a>; <a href="116034?version=1&table=Figure 11e">SR-OffShell-EWK</a><br/><br/> <b>Strong SR distributions:</b> <a href="116034?version=1&table=Figure 13a">SRC-STR</a>; <a href="116034?version=1&table=Figure 13b">SRLow-STR</a>; <a href="116034?version=1&table=Figure 13c">SRMed-STR</a>; <a href="116034?version=1&table=Figure 13d">SRHigh-STR</a><br/><br/> <b>RJR SR Yields:</b> <a href="116034?version=1&table=Table 16">SR2l-Low-RJR, SR2l-ISR-RJR</a><br/><br/> <b>EWK SR Yields:</b> <a href="116034?version=1&table=Table 18">SR-High_16a-EWK, SR-High_8a-EWK, SR-1J-High-EWK, SR-ℓℓ𝑏𝑏-EWK, SR-High_16b-EWK, SR-High_8b-EWK</a>; <a href="116034?version=1&table=Table 19">SR-Int_a-EWK, SR-Low_a-EWK, SR-Low-2-EWK, SR-OffShell_a-EWK, SR-Int_b-EWK, SR-Low_b-EWK, SR-OffShell_b-EWK </a><br/><br/> <b>Strong SR Yields:</b> <a href="116034?version=1&table=Table 21">SRC-STR, SRLow-STR, SRMed-STR, SRHigh-STR</a>; <a href="116034?version=1&table=Table 22">SRZLow-STR, SRZMed-STR, SRZHigh-STR</a><br/><br/> <b>C1N2 Model Limits:</b> <a href="116034?version=1&table=Table 15a C1N2 Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15a C1N2 Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34a C1N2 Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>GMSB Model Limits:</b> <a href="116034?version=1&table=Table 15b GMSB Observed Limit">Obs</a>; <a href="116034?version=1&table=Table 15b GMSB Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 34b GMSB Expected XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Slepton Model Limits:</b> <a href="116034?version=1&table=Figure 16a Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16a Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23a XS Upper Limit">Upper Limits</a><br/><br/> <b>Gluon-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16b Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16b Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23b XS Upper Limit">Upper Limits</a><br/><br/> <b>Squark-Z* Model Limits:</b> <a href="116034?version=1&table=Figure 16c Observed Limit">Obs</a>; <a href="116034?version=1&table=Figure 16c Expected Limit">Exp</a>; <a href="116034?version=1&table=Auxiliary Figure 23c XS Upper Limit">Upper Limits</a><br/><br/> <b>EWK VR distributions:</b> <a href="116034?version=1&table=Figure 4a S_ETmiss in VR-High-Sideband-EWK">VR-High-Sideband-EWK</a>; <a href="116034?version=1&table=Figure 4b S_Etmiss in VR-High-R-EWK">VR-High-R-EWK</a>; <a href="116034?version=1&table=Figure 4c S_Etmiss in VR-1J-High-EWK">VR-1J-High-EWK</a>; <a href="116034?version=1&table=Figure 4d S_Etmiss in VR-llbb-EWK">VR-ℓℓ𝑏𝑏-EWK</a>; <a href="116034?version=1&table=Figure 5a S_Etmiss in VR-Int-EWK">VR-Int-EWK</a>; <a href="116034?version=1&table=Figure 5b S_Etmiss in VR-Low-EWK">VR-Low-EWK</a>; <a href="116034?version=1&table=Figure 5c S_Etmiss in VR-Low-2-EWK">VR-Low-2-EWK</a>; <a href="116034?version=1&table=Figure 5d S_Etmiss in VR-OffShell-EWK">VR-OffShell-EWK</a><br/><br/> <b>Strong VR distributions:</b> <a href="116034?version=1&table=Figure 6a">VRC-STR</a>; <a href="116034?version=1&table=Figure 6b">VRLow-STR</a>; <a href="116034?version=1&table=Figure 6c">VRMed-STR</a>; <a href="116034?version=1&table=Figure 6d">VRHigh-STR</a>; <a href="116034?version=1&table=Figure 8">VR3L-STR</a><br/><br/> <b>Other Strong distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 17a">SRLow-STR + VRLow-STR</a><br/><br/> <b>Other EWK distributions:</b> <a href="116034?version=1&table=Auxiliary Figure 33a Mjj in CR-Z-EWK and SR-Low-EWK">CR-Z-EWK + SR-Low-EWK</a>; <a href="116034?version=1&table=Auxiliary Figure 33b S_ETmiss in CR-Z-met-EWK">CR-Z-met-EWK</a><br/><br/> <b>Strong Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 30-31 SRC-STR Cutflow">SRC-STR GG_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRMed-STR Cutflow">SRC-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRLow-STR Cutflow">SRLow-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRHigh-STR Cutflow">SRC-STR GG_N2_SLN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZLow-STR Cutflow">SRZLow-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZMed-STR Cutflow">SRZMed-STR SS_N2_ZN1</a>; <a href="116034?version=1&table=Auxiliary Table 30-31 SRZHigh-STR Cutflow">SRZHigh-STR SS_N2_ZN1</a><br/><br/> <b>EWK Signal Cutflows:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Cutflow"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Cutflow"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Cutflow"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Cutflow"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Cutflow"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Cutflow"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Cutflow"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Cutflow"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Cutflow"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Cutflow"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Cutflow"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Cutflow"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Cutflow"> SR-llbb-EWK</a><br/><br/> <b>EWK Signal Number of MC Events:</b> <a href="116034?version=1&table=Auxiliary Table 36 SR-OffShell_a-EWK Generated"> SR-OffShell_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 37 SR-OffShell_b-EWK Generated"> SR-OffShell_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 38 SR-Low_a-EWK Generated"> SR-Low_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 39 SR-Low_b-EWK Generated"> SR-Low_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 40 SR-Low-2-EWK Generated"> SR-Low-2-E</a>; <a href="116034?version=1&table=Auxiliary Table 41 SR-Int_a-EWK Generated"> SR-Int_a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 42 SR-Int_b-EWK Generated"> SR-Int_b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 43 SR-High_16a-EWK Generated"> SR-High_16a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 44 SR-High_16b-EWK Generated"> SR-High_16b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 45 SR-High_8a-EWK Generated"> SR-High_8a-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 46 SR-High_8b-EWK Generated"> SR-High_8b-EWK</a>; <a href="116034?version=1&table=Auxiliary Table 47 SR-1J-High-EWK Generated"> SR-1J-Hig</a>; <a href="116034?version=1&table=Auxiliary Table 48 SR-llbb-EWK Generated"> SR-llbb-EWK</a><br/><br/> <b>SRC-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_SLN1 acc in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 acc in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Acceptance:</b> <a href="116034?version=1&table=GG_N2_ZN1 acc in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 acc in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SRC-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRC">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRC">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRC">SS_N2_ZN1</a><br/><br/> <b>SRLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRLow">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRLow">SS_N2_ZN1</a><br/><br/> <b>SRMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRMed">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRMed">SS_N2_ZN1</a><br/><br/> <b>SRHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_SLN1 eff in SRHigh">GG_N2_SLN1</a>; <a href="116034?version=1&table=GG_N2_ZN1 eff in SRHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRHigh">SS_N2_ZN1</a><br/><br/> <b>SRZLow-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZLow">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZLow">SS_N2_ZN1</a><br/><br/> <b>SRZMed-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZMed">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZMed">SS_N2_ZN1</a><br/><br/> <b>SRZHigh-STR Signal Efficiency:</b> <a href="116034?version=1&table=GG_N2_ZN1 eff in SRZHigh">GG_N2_ZN1</a>; <a href="116034?version=1&table=SS_N2_ZN1 eff in SRZHigh">SS_N2_ZN1</a><br/><br/> <b>SR-OffShell_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in C1N2 acc in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in C1N2 acc in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Acceptance:</b><a href="116034?version=1&table=GMSB acc in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 acc in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_a-EWK">C1N2</a>; <br/><br/> <b>SR-OffShell_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-OffShell_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-OffShell_b-EWK">C1N2</a>; <br/><br/> <b>SR-Low_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in C1N2 eff in SR-Low_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in C1N2 eff in SR-Low_a-EWK">C1N2</a>; <br/><br/> <b>SR-Low_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Low_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Low_b-EWK">C1N2</a>; <br/><br/> <b>SR-Int_a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_a-EWK">C1N2</a>; <br/><br/> <b>SR-Int_b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-Int_b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-Int_b-EWK">C1N2</a>; <br/><br/> <b>SR-High_16a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16a-EWK">C1N2</a>; <br/><br/> <b>SR-High_16b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_16b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_16b-EWK">C1N2</a>; <br/><br/> <b>SR-High_8a-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8a-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8a-EWK">C1N2</a>; <br/><br/> <b>SR-High_8b-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-High_8b-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-High_8b-EWK">C1N2</a>; <br/><br/> <b>SR-1J-High-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-1J-High-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-1J-High-EWK">C1N2</a>; <br/><br/> <b>SR-llbb-EWK Signal Efficiency:</b><a href="116034?version=1&table=GMSB eff in SR-llbb-EWK">GMSB</a>; <a href="116034?version=1&table=C1N2 eff in SR-llbb-EWK">C1N2</a>; <br/><br/> <b>Truth Code snippets</b>, <b>SLHA files</b>, and <b>PYHF json likelihoods</b> are available under "Resources" (purple button on the left) ---- Record created with hepdata_lib 0.7.0: https://zenodo.org/record/4946277 and PYHF: https://doi.org/10.5281/zenodo.1169739
Breakdown of expected and observed yields in the two recursive-jigsaw reconstruction signal regions after a simultaneous fit of the the CRs. The two sets of regions are fit separately. The uncertainties include both statistical and systematic sources.
Breakdown of expected and observed yields in the electroweak search High and $\ell\ell bb$ signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the electroweak search Int, Low, and OffShell signal regions after a simultaneous fit to the signal regions and control regions. All statistical and systematic uncertainties are included.
Breakdown of expected and observed yields in the four edge signal regions, integrated over the $m_{\ell\ell}$ distribution after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Breakdown of expected and observed yields in the three on-$Z$ signal regions after a separate simultaneous fit to each signal region and control region pair. The uncertainties include both the statistical and systematic sources.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-High-Sideband-EWK (top-left), VR-High-R-EWK (top-right), VR-1J-High-EWK (bottom-left), and VR-$\ell\ell bb$-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Distributions of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in VR-Int-EWK (top-left), VR-Low-EWK (top-right), VR-Low-2-EWK (bottom-left), and VR-OffShell-EWK (bottom-right) from the EWK search after a simultaneous fit of the control regions. The hatched band includes both the systematic and statistical uncertainties. The last bin includes the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected dilepton mass distributions in VRC-STR (top-left), VRLow-STR (top-right), VRMed-STR (bottom-left), and VRHigh-STR (bottom-right). Each validation region is fit separately with the corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The entries are normalized to the bin width, and the last bin is the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected jet multiplicity in VRLow-STR (top-left), VRMed-STR (top-right), and VRHigh-STR (bottom) after a fit performed on the $m_{\ell\ell}$ distribution and corresponding control region. All statistical and systematic uncertainties are included in the hatched band. The last bin contains the overflow.
Observed and expected dilepton mass distributions in VR3L-STR without a fit to the data. The 'Other' category includes the negligible contributions from $t\bar{t}$ and $Z/\gamma^*$+jets processes. The hatched band contains the statistical uncertainty and the theoretical systematic uncertainties of the $WZ$/$ZZ$ prediction, which are the dominant sources of uncertainty. No fit is performed. The last bin contains the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected distributions in five EWK search regions after a simultaneous fit to the SR and CR. In the top row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-High_8-EWK and $m_{bb}$ in SR-$\ell\ell bb$-EWK. In the middle row, left-to-right, are $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Int-EWK and $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ in SR-Low-EWK. In the bottom row is $m_{\ell\ell}$ in SR-OffShell-EWK. Overlaid are example C1N2 and GMSB signal models, where the numbers in the brackets indicate the masses, in $\mathrm{GeV}$, of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ or the mass of the $\tilde{\chi}_1^0$ and branching ratio to the Higgs boson respectively. All statistical and systematic uncertainties are included in the hatched bands. The last bin includes the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Observed and expected dilepton mass distributions in SRC-STR (top-left), SRLow-STR (top-right), SRMed-STR (bottom-left), and SRHigh-STR (bottom-right), with the binning used for interpretations after a separate simultaneous fit to each signal region and control region pair. The red dashed lines are example signal models overlaid on the figure. All statistical and systematic uncertainties are included in the hatched bands. The last bins are the overflow.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294].
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95\% CLs upper limit on the cross section.
Expected and observed exclusion contours from the EWK analysis for the C1N2 model (left) and GMSB model (right). The dashed line indicates the expected limits at 95$\%$ CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties on the background prediction and experimental uncertainties on the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The gray shaded areas indicate observed limits on these models from the two lepton channels of Ref.~[arXiv: 1803.02762] and Ref.~[arXiv: 1403.5294]. The grey numbers indicate the observed 95$\%$ CLs upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$ ilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].The grey numbers indicated the observed 95\% CL upper limit on the cross section.
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
Expected and observed exclusion contours derived from the combination of all of the Strong search SRs for the $\tilde{g}$--$\tilde{\ell}$ (top-left), $\tilde{g}$--$Z$ (top-right), and $\tilde{s}--Z$ (bottom) models. The dashed line indicates the expected limits at 95\% CL and the surrounding band shows the $1\sigma$ variation of the expected limit as a consequence of the uncertainties in the background prediction and experimental uncertainties of the signal ($\pm1\sigma_\mathrm{exp}$). The red dotted lines surrounding the observed limit contours indicate the variation resulting from changing the signal cross-section within its uncertainty ($\pm1\sigma_\mathrm{theory}^\mathrm{SUSY}$). The grey-shaded area indicates the observed limits on these models from Ref. [23].
The combined $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution of VRLow-STR and SRLow-STR (left), and the same region with the $\Delta\phi(\boldsymbol{j}_{1,2},\boldsymbol{\mathit{p}}_{ ext{T}}^{ ext{miss}})<0.4$ requirement, used as a control region to normalize the $Z/\gamma^*+\mathrm{jets}$ process (right). Separate fits for the SR and VR are performed, as for the results in the paper, and the resulting distributions are merged. All statistical and systematic uncertainties are included in the hatched bands. The last bins contain the overflow.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the four Strong search edge signal regions. `Leptons' refers to electrons and muons only. The gluino-$Z^{(*)}$ model with $m_{ ilde{g}}=800~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRC-STR with 60000 Monte Carlo (MC) events generated. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for SRMed-STR with 30000 (MC) events generated. The gluino-slepton model with $m_{ ilde{g}}=2~TeV$ and $m_{ ilde{\ell}}=1.3~TeV$ is used for SRLow-STR and SRHigh-STR with 30000 MC events generated. The Generator Filter requires two 5~GeV leptons and 100~GeV of \met. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~GeV$ or at least one lepton with $p_{\mathrm{T}}>25~GeV$ and a photon with $p_{\mathrm{T}}>40~GeV$, with all objects within $|\eta|=2.6$.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Cutflow of expected events in the three Strong search on-$Z$ signal regions. The cutflow up to the signal region specific requirements is the same as in the Strong search edge cutflow. The slepton-$Z^{(*)}$ model with $m_{ ilde{\ell}}=1200~GeV$ and $m_{ ilde{\chi}_1^0}=700~GeV$ is used for all of the on-$Z$ signal regions with 30000 (MC) events generated.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 36: Cutflow of expected events in the region SR-OffShell_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 37: Cutflow of expected events in the region SR-OffShell_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 38: Cutflow of expected events in the region SR-Low_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 39: Cutflow of expected events in the region SR-Low_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 40: Cutflow of expected events in the region SR-Low-2-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 41: Cutflow of expected events in the region SR-Int_a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 42: Cutflow of expected events in the region SR-Int_b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 43: Cutflow of expected events in the region SR-High_16a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 44: Cutflow of expected events in the region SR-High_16b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 45: Cutflow of expected events in the region SR-High_8a-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 46: Cutflow of expected events in the region SR-High_8b-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 47: Cutflow of expected events in the region SR-1J-High-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
Table 48: Cutflow of expected events in the region SR-llbb-EWK. Requirements below the line are specific to this region. On the Generator Filter line, the total number of unweighted events simulated is given in brackets. `Leptons' refers to electrons and muons only. For C1N2 models, the Generator Filter requires at least two $7~\mathrm{GeV}$ leptons and for C1N2 models with mass splittings below the Z boson mass it also requires $75~\mathrm{GeV}$ of $E_{\mathrm{T}}^{\mathrm{miss}}$. For GMSB models, the Generator Filter requires at least two $3~\mathrm{GeV}$ leptons. For on-shell C1N2 models, the `Forced Decays' require each Z boson to decay to a charged lepton pair (electron, muon, or tau) and each W boson to decay hadronically. For off-shell C1N2 models, each neutralino is forced to produce a charged lepton pair in its decay, and each chargino can produce any fermion pair. The SUSY2 kernel requires at least two leptons with $p_{\mathrm{T}}>9~\mathrm{GeV}$ or at least one lepton with $p_{\mathrm{T}}>25~\mathrm{GeV}$ and a photon with $p_{\mathrm{T}}>40~\mathrm{GeV}$, with all objects within $|\eta|=2.6$.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
The combined $m_{jj}$ distribution of CR-Z-EWK and SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ distribution in CR-Z-met-EWK (right), which removes the upper limit of $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) < 9$ from the definition of CR-Z-EWK. This $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ tail overlaps other control and validation regions, but not signal regions. The arrows indicate the signal region SR-Low-EWK (left), and the $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$ phase space which is not included in CR-Z-EWK (right). All EWK search control and signal regions are included in the fit. All statistical and systematic uncertainties are included in the hatched bands. The theoretical uncertainties from CR-Z-EWK are applied to CR-Z-met-EWK. The last bins contain the overflow.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the GMSB model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-OffShell-EWK and SR-Low-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-Low-2-EWK and SR-Int-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-High-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) for the C1N2 model in the regions SR-1J-High-EWK and SR-$\ell\ell bb$-EWK. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. For models with mass splittings below the Z boson mass, this filter also requires $E_{\mathrm{T}}^{\mathrm{miss}} > 75~\mathrm{GeV}$. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_SLN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the GG_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Signal region acceptance (left) and efficiency (right) over the full \mll\ range for the SS_N2_ZN1 model in Strong search regions. Acceptance is calculated by applying the signal-region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out.
Results are presented from a search for physics beyond the standard model in proton-proton collisions at $\sqrt{s} =$ 13 TeV in channels with two Higgs bosons, each decaying via the process H $\to$$\mathrm{b\bar{b}}$, and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino ($\tilde{\chi}^0_1$) that in turn decays to a massless goldstino and a Higgs boson, $\tilde{\chi}^0_1$ masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $\tilde{\chi}^0_2$ to H and a light $\tilde{\chi}^0_1$, gluino masses below 2330 GeV are excluded.
A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $\sqrt{s} =$ 13 TeV collected in the three-year period 2016-2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb$^{-1}$. The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $\widetilde{\chi}^0_2 / \widetilde{\chi}^\pm_1$ masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205 (150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter $\mu$ up to 180 GeV with the bino mass parameter $M_1$ at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the $\text{t}\bar{\text{t}}$ CR. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the $\text{t}\bar{\text{t}}$ CR. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the WZ-enriched region. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the WZ-enriched region. Uncertainties include both the statistical and systematic components.
The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the SS CR. Uncertainties include both the statistical and systematic components.
The 2$\ell$-Ewk SR: the post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 2$\ell$-Ewk SR: the post-fit distribution of the $M(\ell\ell)$ variable is shown for the med-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 2$\ell$-Ewk SR: the post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 2$\ell$-Ewk SR: the post-fit distribution of the $M(\ell\ell)$ variable is shown for the ultra-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 3$\ell$-Ewk search regions: the post-fit distribution of the $M^{\text{min}}_{\text{SFOS}}(\ell\ell)$ variable is shown for the low-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 3$\ell$-Ewk search regions: the post-fit distribution of the $M^{\text{min}}_{\text{SFOS}}(\ell\ell)$ variable is shown for the high-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the TChiWZ and the simplified higgsino models in the scenario where the product of $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ eigenvalues is positive and negative, respectively. The numbers after the model name in the legend indicate the mass of the NLSP and the mass splitting between the NLSP and LSP, in GeV.
The 2$\ell$-Stop SR: the post-fit distribution of the leading lepton $p_{T}$ variable is shown for the low-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the T2bff$\tilde{\chi}^0_1$ and the T2bW models. The numbers after the model name in the legend indicate the mass of the top squark and the mass splitting between the top squark and LSP, in GeV.
The 2$\ell$-Stop SR: the post-fit distribution of the leading lepton $p_{T}$ variable is shown for the med-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the T2bff$\tilde{\chi}^0_1$ and the T2bW models. The numbers after the model name in the legend indicate the mass of the top squark and the mass splitting between the top squark and LSP, in GeV.
The 2$\ell$-Stop SR: the post-fit distribution of the leading lepton $p_{T}$ variable is shown for the high-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the T2bff$\tilde{\chi}^0_1$ and the T2bW models. The numbers after the model name in the legend indicate the mass of the top squark and the mass splitting between the top squark and LSP, in GeV.
The 2$\ell$-Stop SR: the post-fit distribution of the leading lepton $p_{T}$ variable is shown for the ultra-MET bin. Uncertainties include both the statistical and systematic components. The signal distributions overlaid on the plot are from the T2bff$\tilde{\chi}^0_1$ and the T2bW models. The numbers after the model name in the legend indicate the mass of the top squark and the mass splitting between the top squark and LSP, in GeV.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the TChiWZ model. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. Results are reported for the $\widetilde{m}_{\tilde{\chi}^0_2} \widetilde{m}_{\tilde{\chi}^0_1} > 0$ $M(\ell\ell)$ spectrum reweighting scenario. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the TChiWZ model. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. Results are reported for the $\widetilde{m}_{\tilde{\chi}^0_2} \widetilde{m}_{\tilde{\chi}^0_1} < 0$ $M(\ell\ell)$ spectrum reweighting scenario. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the simplified higgsino model. The simplified model includes both neutralino pair and neutralino-chargino production modes. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. The results are reported for the $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ $M(\ell\ell)$ spectrum reweighting scenario. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the pMSSM higgsino model. The pMSSM one includes all possible production modes. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. The results are reported for the $\widetilde{m}_{\tilde{\chi}^0_2}\widetilde{m}_{\tilde{\chi}^0_1}$ $M(\ell\ell)$ spectrum reweighting scenario. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the T2bff$\tilde{\chi}^0_1$ simplified model. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL cross sections, with the variations (thin lines) corresponding to the uncertainty in the cross section for the T2bW simplified model. The red curves present the 95% CL expected limits with the band (thin lines) covering 68% of the limits in the absence of signal. The range of luminosities of the analysis regions included in the fit is indicated on the plot.
A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.
Relative systematic uncertainties in the estimated number of background events in the signal regions. In the lower part of the table, a breakdown of the total uncertainty into different categories is given. For the multi-bin SR, the breakdown refers to the integral over all three $p_{\text{T}}(\tau)$ bins. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.
Distributions of $m_{\text{T}2}(\tau_{1},\tau_{2})$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $E_{\text{T}}^{\text{miss}}$ in the di-tau SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $s_{\text{T}}$ in the single-tau one-bin SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $m_{\text{T}}(\tau)$ in the single-tau one-bin SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $\Sigma m_{\text{T}}(b_{1,2})$ in the single-tau $p_{\text{T}}(\tau)$-binned SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Distributions of $p_{\text{T}}(\tau)$ in the single-tau $p_{\text{T}}(\tau)$-binned SR. The stacked histograms show the various SM background contributions. The hatched band indicates the total statistical and systematic uncertainty of the SM background. The $t\bar{t}$ (2 real $\tau$) and $t\bar{t}$ (1 real $\tau$) as well as the single-top background contributions are scaled with the normalization factors obtained from the background-only fit. Minor backgrounds are grouped together and denoted as 'Other'. This includes $t\bar{t}$-fake, single top, and other top (di-tau channel) or $t\bar{t}$-fake, $t\bar{t}+H$, multiboson, and other top (single-tau channel). The overlaid dotted lines show the additional contributions for signal scenarios close to the expected exclusion contour with the particle type and the mass and $\beta$ parameters for the simplified models indicated in the legend. For the leptoquark signal model the shapes of the distributions for $\text{LQ}_{3}^{\text{d}}$ and $\text{LQ}_{3}^{\text{v}}$ (not shown) are similar to that of $\text{LQ}_{3}^{\text{u}}$. The rightmost bin includes the overflow.
Observed event yields in data ('Observed') and expected event yields for SM background processes obtained from the background-only fit ('Total bkg.' and rows below) in the signal regions of the di-tau and single-tau channels. The quoted uncertainties include both the statistical and systematic uncertainties and are truncated at zero yield. By construction, no $t\bar{t}$ (2 real $\tau$) events can pass the selections in the single-tau channel. As the individual uncertainties are correlated, they do not add in quadrature to equal the total background uncertainty.
From left to right: upper limits at the 95% confidence level (CL) on the visible cross section ($\sigma_\text{vis}$) and on the number of signal events ($S_{\text{obs}}^{95}$). The third column ($S_{\text{exp}}^{95}$) shows the upper limit at the 95% CL on the number of signal events, given the expected number (and $\pm 1\,\sigma$ excursions on the expectation) of background events. The last two columns indicate the confidence level observed for the background-only hypothesis ($\text{CL}_{b}$), the discovery $p$-value ($p(s=0)$) and the significance ($Z$). In the di-tau SR, where fewer events are observed than predicted by the fitted background estimate, the $p$-value is capped at 0.5.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for the minimal-coupling scenario. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for the minimal-coupling scenario. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for vector leptoquarks with additional gauge couplings. The limits are derived from the binned single-tau signal region.
Expected and observed exclusion contours at the 95% confidence level for the vector third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{v}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ into a quark and a charged lepton. The plot shows the exclusion contour for vector leptoquarks with additional gauge couplings. The limits are derived from the binned single-tau signal region.
Exclusion contours at the 95% confidence level for the stop-stau signal model as a function of the masses of the top squark $m(\tilde{t}_{1})$ and of the tau slepton $m(\tilde{\tau}_{1})$. Expected and observed limits are shown for the present search in comparison to observed limits from previous ATLAS analyses based on data from Run-1 of the LHC at $\sqrt{s} = 8$ TeV [Eur. Phys. J. C 76 (2016)] and on a partial dataset from Run 2 at $\sqrt{s} = 13$ TeV [Phys. Rev. D 98 (2018) 032008]. The green band indicates the limit on the mass of the tau slepton (for a massless LSP) from the LEP experiments.
Exclusion contours at the 95% confidence level for the stop-stau signal model as a function of the masses of the top squark $m(\tilde{t}_{1})$ and of the tau slepton $m(\tilde{\tau}_{1})$. Expected and observed limits are shown for the present search in comparison to observed limits from previous ATLAS analyses based on data from Run-1 of the LHC at $\sqrt{s} = 8$ TeV [Eur. Phys. J. C 76 (2016)] and on a partial dataset from Run 2 at $\sqrt{s} = 13$ TeV [Phys. Rev. D 98 (2018) 032008]. The green band indicates the limit on the mass of the tau slepton (for a massless LSP) from the LEP experiments.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{u}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for up-type leptoquarks $\text{LQ}_{3}^{\text{u}})$ with charge $+2/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{u}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for up-type leptoquarks $\text{LQ}_{3}^{\text{u}})$ with charge $+2/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{d}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for down-type leptoquarks $\text{LQ}_{3}^{\text{d}})$ with charge $-1/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Expected and observed exclusion contours at the 95% confidence level for the scalar third-generation leptoquark signal model, as a function of the mass $m(\text{LQ}_{3}^{\text{d}})$ and the branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ into a quark and a charged lepton. The plot shows the exclusion contour for down-type leptoquarks $\text{LQ}_{3}^{\text{d}})$ with charge $-1/3e$. The limits are derived from the binned single-tau signal region. Shown in gray for comparison are the observed exclusion-limit contours from the previous ATLAS publication that targets the same leptoquark models but is based on a subset of the Run-2 data [JHEP 06 (2019) 144]. In this previous publication five different analyses are considered that target not only the final state studied here but also the final states that correspond to a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow q\ell)$ of 0 or 1, leading to the concave shapes of the gray exclusion contours.
Upper limits on the signal cross section at the 95 % confidence level for the stop-stau signal model.
Upper limits on the signal cross section at the 95 % confidence level for the scalar third-generation leptoquark signal model with up-type leptoquarks.
Upper limits on the signal cross section at the 95 % confidence level for the scalar third-generation leptoquark signal model with down-type leptoquarks.
Upper limits on the signal cross section at the 95 % confidence level for the vector third-generation leptoquark signal model with minimal coupling (MC).
Upper limits on the signal cross section at the 95 % confidence level for the vector third-generation leptoquark signal model with additional gauge couplings (YM).
Acceptance of the one-bin signal region of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the one-bin signal region of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$.
Efficiency of the signal region of the di-tau channel for pair production of up-type leptoquarks $\text{LQ}_{3}^{\text{u}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{u}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the one-bin signal region of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$.
Efficiency of the signal region of the di-tau channel for pair production of down-type leptoquarks $\text{LQ}_{3}^{\text{d}}$. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{d}} \rightarrow t\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario.
Efficiency of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ in the minimal-coupling scenario. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the one-bin signal region of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 or 1 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings.
Efficiency of the signal region of the di-tau channel for pair production of vector leptoquarks $\text{LQ}_{3}^{\text{v}}$ with additional gauge couplings. The plot does not show efficiencies for a branching fraction $B(\text{LQ}_{3}^{\text{v}} \rightarrow b\tau)$ of 0 because here the acceptance at generator level becomes zero and the efficiency is thus undefined.
Acceptance of the one-bin signal region of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the one-bin signal region of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the first bin of the multi-bin signal region (50 GeV $< p_{\text{T}}(\tau) <$ 100 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the middle bin of the multi-bin signal region (100 GeV $< p_{\text{T}}(\tau) <$ 200 GeV) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the last bin of the multi-bin signal region (200 GeV $< p_{\text{T}}(\tau)$) of the single-tau channel for pair production of top squarks with decays via tau sleptons.
Acceptance of the signal region of the di-tau channel for pair production of top squarks with decays via tau sleptons.
Efficiency of the signal region of the di-tau channel for pair production of top squarks with decays via tau sleptons.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the di-tau SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the single-tau one-bin SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\tilde{t}_{1}) = 1350$ GeV, $m(\tilde{\tau}_{1}) = 1090$ GeV for the single-tau multi-bin SR. The simulated sample contains 30,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the di-tau SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau one-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{u}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau multi-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the di-tau SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau one-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{d}}) = 1.2$ TeV, $\beta = 0.5$ for the single-tau multi-bin SR. The simulated sample contains 210,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the di-tau SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the single-tau one-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the minimal-coupling scenario for the single-tau multi-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the di-tau SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the di-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the single-tau one-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
Cutflow for the benchmark signal model $m(\text{LQ}_{3}^{\text{v}}) = 1.4$ TeV, $\beta = 0.5$ in the Yang--Mills scenario for the single-tau multi-bin SR. The simulated sample contains 50,000 raw MC events. Weighted event yields are reported, normalized to an integrated luminosity of 139 fb$^{-1}$. 'Preselection' refers to the preselection for the single-tau channel.
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino $\tilde \chi_2^0$ and a bottom quark, with $\tilde \chi_2^0$ decaying into a Higgs boson and the lightest neutralino $\tilde \chi_1^0$. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying $\tau$-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the $\tilde \chi_2^0$, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between $\tilde \chi_2^0$ and $\tilde \chi_1^0$. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.
The expected exclusion contour at $95\%$ CL as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Masses within the contour are excluded.
The observed exclusion contour at $95\%$ CL as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Masses within the contour are excluded.
Acceptance in the Single-bin SR as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Single-bin SR as a function of the M(Sbottom) vs. M(N2) with the $\Delta$ M(N2,N1) $= 130$ GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $\min_{\Theta} < 0.5$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $\min_{\Theta} < 0.5$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $0.5 < \min_{\Theta} < 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $0.5 < \min_{\Theta} < 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $\min_{\Theta} > 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $\min_{\Theta} > 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Observed upper limits on the signal cross section as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV.
Expected upper limits on the signal cross section as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV.
Cutflows for the bechmarl signal point M(Sbottom) = 800 GeV, M(N2) = 180 GeV. Weighted event yields are reported starting with the "Preselection" line, normalized to an integrated luminosity of $139$ fb$^{−1}$.
Comparison of the expected and observed event yields in the signal regions. The top-quark and Z(mumu) background contributions are scaled with the normalization factors obtained from the background-only fit. The other contribution includes all the backgrounds not explicitly listed in the legend (V+jets except Z(mumu)+jets, di-/triboson, multijet). The hatched band indicates the total statistical and systematic uncertainties in the SM background. The contributions from three signal models to the signal regions are also displayed, where the masses M(Sbottom) and M(N2) are given in GeV in the legend. The lower panel shows the significance of the deviation of the observed yield from the expected background yield.
Dominant systematic uncertainties in the background prediction for the signal regions after the fit to the control regions. “Other” includes the uncertainties arising from muons, jet-vertex tagging, modeling of pile-up, the $E_{T}^{miss}$ computation, multijet background, and luminosity. The individual uncertainties can be correlated and do not necessarily add up quadratically to the total uncertainty.
A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.
Top quark tagging efficiencies are shown as a function of the generator-level top quark $p_T$ for the merged tagging algorithm and resolved tagging algorithm described in the paper. This plot shows the efficiencies as calculated in a sample of simulated $t\bar{t}$ events in which one top quark decays leptonically, while the other decays hadronically. In addition to the individual algorithms shown as orange squares (boosted top quarks) and green inverted triangles (resolved top quarks), the total top quark tagging efficiency (blue dots) is also shown.
W boson tagging efficiencies are shown as a function of the generator-level W boson $p_T$ for the merged tagging algorithm described in the paper. This plot shows the W boson tagging efficiency when calculated in a sample of simulated WW events.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $p_T^{miss}$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $p_T^{miss}$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_t$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_t$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_W$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_W$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_{\text{res}}$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_{\text{res}}$ after scaling the simulation to match the total yield in data.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the low $\Delta$m search bins 0--52. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the low $\Delta$m search bins 0--52. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 53--104. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 53--104. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 105--152 with ${N_b = 2}$. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 105--152 with ${N_b = 2}$. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 153--182 with ${N_b \geq 3}$. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 153--182 with ${N_b \geq 3}$. The hatched bands correspond to the total uncertainty in the background prediction.
The observed 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The expected 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The observed exclusion contour of the T2tt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The mean expected exclusion contour of the T2tt simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The observed 95% CL upper limit on the production cross section of the T2bW simplified model as a function of the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2bW simplified model as a function of the top squark and LSP masses.
The observed exclusion contour of the T2bW simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2bW simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2tb simplified model as a function of the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2tb simplified model as a function of the top squark and LSP masses.
The observed exclusion contour of the T2tb simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2tb simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2ttC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2ttC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2ttC simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2ttC simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2bWC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2bWC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2bWC simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2bWC simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2cc simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2cc simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2cc simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2cc simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T1tttt simplified model as a function of the gluino and LSP masses.
The expected 95% CL upper limit on the production cross section of the T1tttt simplified model as a function of the gluino and LSP masses.
The observed exclusion contour of the T1tttt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T1tttt simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T1ttbb simplified model as a function of the gluino and LSP masses.
The expected 95% CL upper limit on the production cross section of the T1ttbb simplified model as a function of the gluino and LSP masses.
The observed exclusion contour of the T1ttbb simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T1ttbb simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T5ttcc simplified model as a function of the gluino and LSP masses. The upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The expected 95% CL upper limit on the production cross section of the T5ttcc simplified model as a function of the gluino and LSP masses. The uppser limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The observed exclusion contour of the T5ttcc simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). The expected and observed upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The mean expected exclusion contour of the T5ttcc simplified model and the region containing 68% and 95% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis. The expected and observed upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the Observed limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection. Background fit results for $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, DF}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, SF}$ and $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t} Z}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Background fit results for $\mathrm{CR}^{\mathrm{3-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{3-body}}_{VV}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{3-body}}_{VV}$, $\mathrm{VR(1)}^{\mathrm{3-body}}_{t\bar{t}}$ and $\mathrm{VR(2)}^{\mathrm{3-body}}_{t\bar{t}}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Background fit results for $\mathrm{CR}^{\mathrm{4-body}}_{t\bar{t}}$,$\mathrm{CR}^{\mathrm{4-body}}_{VV}$, $\mathrm{VR}^{\mathrm{4-body}}_{t\bar{t}}$, $VR^{4-body}_{VV}$ and $\mathrm{VR}^{\mathrm{4-body}}_{VV,lll}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the different-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the same-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Observed event yields and background fit results for the three-body selection SRs. The ''Others'' category contains contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Observed event yields and background fit results for SR$^{\mathrm{4-body}}_{\mathrm{Small}\,\Delta m}$ and SR$^{\mathrm{4-body}}_{\mathrm{Large}\,\Delta m}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm 1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta\ m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection. Background fit results for the $inclusive$ SRs. The Others category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=600~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the scalar signal model $t\bar{t} + \phi $ with $m(\phi)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the pseudoscalar signal model $t\bar{t} + a $ with $m(a)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=385~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=430~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=460~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=380~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=460~ GeV$ and $m(\tilde{\chi}^0_1)=415~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=320~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
A search is performed for the electroweak pair production of charginos and associated production of a chargino and neutralino, each of which decays through an $R$-parity-violating coupling into a lepton and a $W$, $Z$, or Higgs boson. The trilepton invariant-mass spectrum is constructed from events with three or more leptons, targeting chargino decays that include an electron or muon and a leptonically decaying $Z$ boson. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data produced by the Large Hadron Collider at a center-of-mass energy of $\sqrt{s}$ = 13 TeV and collected by the ATLAS experiment between 2015 and 2018. The data are found to be consistent with predictions from the Standard Model. The results are interpreted as limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model. Limits are also set on the production of charginos and neutralinos for a Minimal Supersymmetric Standard Model with an approximate $B$-$L$ symmetry. Charginos and neutralinos with masses between 100 GeV and 1100 GeV are excluded depending on the assumed decay branching fractions into a lepton (electron, muon, or $\tau$-lepton) plus a boson ($W$, $Z$, or Higgs).
This is the HEPData space for the trilepton resonance wino search, the full resolution figures can be found here https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-36/. The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' buttun above where they can then be found in the 'Common Resources' area. A detailed README for how to use the likelihoods is also included in this download. <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Obs.%20data%20vs%20SM%20bkg.%20exp.%20in%20CRs%20and%20VRs">Obs. data vs SM bkg. exp. in CRs and VRs</a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0%20">$\ell=(e, \mu, \tau)$, Obs_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up%20">$\ell=(e, \mu, \tau)$, Obs_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down%20">$\ell=(e, \mu, \tau)$, Obs_0_Down </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0%20">$\ell=(e, \mu, \tau)$, Exp_0 </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up%20">$\ell=(e, \mu, \tau)$, Exp_0_Up </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down%20">$\ell=(e, \mu, \tau)$, Exp_0_Down </a> <li><a href="?table=$\ell=e$,%20Obs_0%20">$\ell=e$, Obs_0 </a> <li><a href="?table=$\ell=e$,%20Obs_0_Up%20">$\ell=e$, Obs_0_Up </a> <li><a href="?table=$\ell=e$,%20Obs_0_Down%20">$\ell=e$, Obs_0_Down </a> <li><a href="?table=$\ell=e$,%20Exp_0%20">$\ell=e$, Exp_0 </a> <li><a href="?table=$\ell=e$,%20Exp_0_Up%20">$\ell=e$, Exp_0_Up </a> <li><a href="?table=$\ell=e$,%20Exp_0_Down%20">$\ell=e$, Exp_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Obs_0%20">$\ell=\mu$, Obs_0 </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Up%20">$\ell=\mu$, Obs_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Obs_0_Down%20">$\ell=\mu$, Obs_0_Down </a> <li><a href="?table=$\ell=\mu$,%20Exp_0%20">$\ell=\mu$, Exp_0 </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Up%20">$\ell=\mu$, Exp_0_Up </a> <li><a href="?table=$\ell=\mu$,%20Exp_0_Down%20">$\ell=\mu$, Exp_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Obs_0%20">$\ell=\tau$, Obs_0 </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Up%20">$\ell=\tau$, Obs_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Obs_0_Down%20">$\ell=\tau$, Obs_0_Down </a> <li><a href="?table=$\ell=\tau$,%20Exp_0%20">$\ell=\tau$, Exp_0 </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Up%20">$\ell=\tau$, Exp_0_Up </a> <li><a href="?table=$\ell=\tau$,%20Exp_0_Down%20">$\ell=\tau$, Exp_0_Down </a> </ul> <b>Triangle Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=(e, \mu, \tau)$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 600 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 600 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 800 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 800 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0">Triangle, 900 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0">Triangle, 900 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=e$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=e$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=e$, Exp Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 600 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 600 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 600 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 600 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 600 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20600%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 600 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 700 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20700%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 700 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 800 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 800 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 800 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 800 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 800 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20800%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 800 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, 900 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, 900 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, 900 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, 900 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Obs%20Lim">Triangle, 900 GeV, $\ell=\mu$, Obs Lim</a> <li><a href="?table=Triangle,%20900%20GeV,%20$\ell=\mu$,%20Exp%20Lim">Triangle, 900 GeV, $\ell=\mu$, Exp Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 200 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 200 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 200 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 200 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 200 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20200%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 200 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 300 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 300 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 300 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 300 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 300 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20300%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 300 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 400 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 400 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 400 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 400 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 400 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20400%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 400 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0">Triangle, 500 GeV, $\ell=\tau$, Obs_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Up">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs_0_Down">Triangle, 500 GeV, $\ell=\tau$, Obs_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0">Triangle, 500 GeV, $\ell=\tau$, Exp_0</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Up">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Up</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp_0_Down">Triangle, 500 GeV, $\ell=\tau$, Exp_0_Down</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Obs%20Lim">Triangle, 500 GeV, $\ell=\tau$, Obs Lim</a> <li><a href="?table=Triangle,%20500%20GeV,%20$\ell=\tau$,%20Exp%20Lim">Triangle, 500 GeV, $\ell=\tau$, Exp Lim</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=(e,%20\mu,%20\tau)$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=(e, \mu, \tau)$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=e$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=e$, ExpLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SRFR, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SRFR,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SRFR, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR4$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR4$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Obs_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Obs_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Up">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Up</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20Exp_0_Down">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, Exp_0_Down</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ObsLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ObsLimVal</a> <li><a href="?table=Triangle,%20SR3$\ell$,%20700%20GeV,%20$\ell=\mu$,%20ExpLimVal">Triangle, SR3$\ell$, 700 GeV, $\ell=\mu$, ExpLimVal</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20upperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=(e,%20\mu,%20\tau)$,%20expectedUpperLimit_XS_gr%20">$\ell=(e, \mu, \tau)$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20upperLimit_XS_gr%20">$\ell=e$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=e$,%20expectedUpperLimit_XS_gr%20">$\ell=e$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20upperLimit_XS_gr%20">$\ell=\mu$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\mu$,%20expectedUpperLimit_XS_gr%20">$\ell=\mu$, expectedUpperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20upperLimit_XS_gr%20">$\ell=\tau$, upperLimit_XS_gr </a> <li><a href="?table=$\ell=\tau$,%20expectedUpperLimit_XS_gr%20">$\ell=\tau$, expectedUpperLimit_XS_gr </a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SRFR%20">Variable bin $m_{Z\ell}$ for SRFR </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR4$\ell$%20">Variable bin $m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=Variable%20bin%20$m_{Z\ell}$%20for%20SR3$\ell$%20">Variable bin $m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$E^{miss}_{T}$%20">N-1 for SR3$\ell$, $E^{miss}_{T}$ </a> <li><a href="?table=N-1%20for%20SR3$\ell$,%20$m^{min}_{T}$%20">N-1 for SR3$\ell$, $m^{min}_{T}$ </a> <li><a href="?table=N-1%20for%20SR4$\ell$,%20$E^{miss,SF}_{T}$%20">N-1 for SR4$\ell$, $E^{miss,SF}_{T}$ </a> <li><a href="?table=N-1%20for%20SRFR,%20$m^{asym}_{Z\ell}$%20">N-1 for SRFR, $m^{asym}_{Z\ell}$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SRFR%20">$m_{Z\ell}$ for SRFR </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR4$\ell$%20">$m_{Z\ell}$ for SR4$\ell$ </a> <li><a href="?table=$m_{Z\ell}$%20for%20SR3$\ell$%20">$m_{Z\ell}$ for SR3$\ell$ </a> <li><a href="?table=$L_{T}$%20for%20SR4$\ell$%20">$L_{T}$ for SR4$\ell$ </a> </ul> <b>Cut flows:</b> <ul display="inline-block"> <li><a href="?table=Yields%20Table">Yields Table</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SRFR">Model-Independent Results Table, SRFR</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR4$\ell$">Model-Independent Results Table, SR4$\ell$</a> <li><a href="?table=Model-Independent%20Results%20Table,%20SR3$\ell$">Model-Independent Results Table, SR3$\ell$</a> <li><a href="?table=Cutflow%20Table">Cutflow Table</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Acceptance in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Acceptance in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Acceptance in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Acceptance in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Acceptance in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Acceptance in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Acceptance%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Acceptance in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SRFR region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$e$">Efficiency in the SRFR region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\mu$">Efficiency in the SRFR region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SRFR%20region%20with%20$\ell=$$\tau$">Efficiency in the SRFR region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR4$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR4$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR4$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR4$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR4$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$(e,%20\mu,%20\tau)$">Efficiency in the SR3$\ell$ region with $\ell=$$(e, \mu, \tau)$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$e$">Efficiency in the SR3$\ell$ region with $\ell=$$e$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\mu$">Efficiency in the SR3$\ell$ region with $\ell=$$\mu$</a> <li><a href="?table=Efficiency%20in%20the%20SR3$\ell$%20region%20with%20$\ell=$$\tau$">Efficiency in the SR3$\ell$ region with $\ell=$$\tau$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Acceptance%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Acceptance in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SRFR,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SRFR, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR4$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR4$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Triangle,%20Efficiency%20in%20SR3$\ell$,%20$\ell=(e,%20\mu,%20\tau)$">Triangle, Efficiency in SR3$\ell$, $\ell=(e, \mu, \tau)$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SRFR">Acceptance by Final State in SRFR</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR4$\ell$">Acceptance by Final State in SR4$\ell$</a> <li><a href="?table=Acceptance%20by%20Final%20State%20in%20SR3$\ell$">Acceptance by Final State in SR3$\ell$</a> </ul>
The observed data and the SM background expectation in the CRs (pre-fit) and VRs (post-fit). The ''Other'' category mostly consists of tW Z, ttW, and tZ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the fractional difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, computed following the profile likelihood method described in Ref. [arXiv: physics/0702156].
The observed yields and post-fit background expectations in SRFR, SR4$\ell$, and SR3$\ell$, shown inclusively and when the direct lepton from a $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ decay is required to be an electron or muon. The Other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. Uncertainties on the background expectation include combined statistical and systematic uncertainties. The individual uncertainties may be correlated and do not necessarily add in quadrature to equal the total background uncertainty.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The $m_{Z\ell}$ binning is the same as used in the fit and the yield is normalized to the bin width, with the last bin normalized using a width of 200 GeV. the "Other" category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the differences between the observed data and expected yields, computed following the profile likelihood method described in ref.[arxiv: physics/0702156]
$E^{miss}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{min}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$E^{miss,SF}_{T}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
$m^{asym}_{Z\ell}$ kinematic distribution in the signal regions showing the data and the post-fit background in sr3$\ell$. The fit uses all CR and SRs, and the distributions are shown inclusively in $m_{Z\ell}$. The full event selection for each of the corresponding regions is applied except for the variable shown, where the selection is indicated by a blue arrow. the first (last) bin includes underflow (overflow) events. The other category mostly consists of $tWZ$, $t\bar{t}W$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the ratio between the data and the post-fit background prediction.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Model-independent results where each row targets one $m_{Z\ell}$ bin of one SR and probes scenarios where a generic beyond-the-SM process is assumed to contribute only to that $m_{Z\ell}$ bin. The first two columns refer to the signal region and $m_{Z\ell}$ bin probed, while the third and fourth columns show the observed ($N{obs}$) and expected ($N{exp}$) event yields. The expected yields are obtained using a background-only fit of the CRs, and the errors include statistical and systematic uncertainties. The fifth and sixth columns show the observed 95% CL upper limit on the visible cross section ($\langle \epsilon \sigma \rangle^{95}_{obs}$) and on the number of signal events ($S^{95}_{obs}$), while the seventh column shows the expected 95% CL upper limit on the number of signal events ($S^{95}_{exp}$) with the associated $1~\sigma$ uncertainties. The last column provides the discovery $p$-value and significance ($Z$) of any excess of data above background expectation. Events for which the observed yield is less than the expected yield are capped at a $p$-value of 0.5.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to any lepton with equal probability. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to an electron only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a muon only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the observed upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to $Z$ bosons. grey numbers represent the expected upper cross-section limits. curves are derived separately when requiring that the charged-lepton decays of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are to a $\tau$-leptons only. the expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. the observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{susy}}$ (dotted red line) from signal cross section uncertainties on the signal models. the phase-space excluded by the search is shown in the shaded color. the sum of the $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fractions to $W$, $Z$, and Higgs bosons is unity for each point, and the branching fractions to $W$ and Higgs bosons are chosen so as to be equal everywhere.
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SRFR. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and post-fit SM background expectation as a function of $m_{Z\ell}$ in SR3$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.The bottom panel shows the ratio between the data and the post-fit background prediction
The observed data and pre-fit SM background expectation as a function of $L_{T}$ in SR4$\ell$. The first (last) bin includes underflow (overflow) events. The "Other" category mostly consists of $tWZ$, $ttW$, and $tZ$ processes. Only statistical uncertainties on the data and background expecation are shown.The bottom panel shows the ratio between the data and the background prediction
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 600 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 800 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons for a mass of 900 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 200 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 300 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 400 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curves for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into $\tau$-leptons for a mass of 500 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95/% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95/% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into any leptons for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into electrons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the observed upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Exclusion curve for the simplified model of $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{0}_{1}\tilde\chi^{0}_{1}$ pair-production as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ branching fraction to $Z$ and Higgs bosons. Results are shown for the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ into muons only for a mass of 700 GeV. Grey numbers represent the expected upper cross-section limits. The expected 95% CL exclusion (dashed black line) is shown with $\pm1~\sigma_{\mathrm{exp}}$ (yellow band) from systematic and statistical uncertainties on the expected yields. The observed 95% CL exclusion (solid red line) is shown with the $\pm1~\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (dotted red line) from signal cross section uncertainties on the signal models. The phase-space excluded by the search is shown in the shaded color.
Summary of event selections for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 200, 500, and 800 GeV, shown separately for the $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1}$ and $\tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ processes. The yields are normalized to a luminosity of $139 fb^{-1}$, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied at the end. After the initial selections, the yields are separated into SRFR, SR4$\ell$, and SR3$\ell$ regions, and then further separated into the $e$ and $\mu$ channels. Democratic branching fractions into bosons (W, Z, and Higgs) and leptons ($e$, $\mu$, and $\tau$ are used, with no branching fraction reweighting performed. The generator filters are discussed in detail in Section 3. The computing preselection requires at least two electrons or muons of uncalibrated pT > 9 GeV and |$\eta$| < 2.6.
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into any leptons with equal probability
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into electrons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into muons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ mass and branching fraction to Z bosons, and are derived separately when requiring that the charged-lepton decays of $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ are into $\tau$-leptons only
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ truth-level acceptances in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SRFR region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR4$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The combined $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ reconstruction efficiencies in the SR3$\ell$ region for $\tilde\chi^{\pm}_{1}/\tilde\chi^{0}_{1}$ masses of 700 GeV. Results are given as a function of the branching fractions to Z and Higgs bosons
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SRFR region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR4$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
The truth-level acceptances for each decay mode of the generated $\tilde\chi^{\pm}_{1}\tilde\chi^{\mp}_{1} + \tilde\chi^{\pm}_{1}\tilde\chi^{0}_{1}$ signals in the SR3$\ell$ region. Results are given as a function of $\tilde\chi^{0}_{1}/\tilde\chi^{0}_{1}$ mass and the final state boson and lepton combination.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.