Date

Comparison of 20 exclusive reactions at large t

White, C. ; Appel, R. ; Barton, D.S. ; et al.
Phys.Rev.D 49 (1994) 58-78, 1994.
Inspire Record 377535 DOI 10.17182/hepdata.50306

We report a study of 20 exclusive reactions measured at the AGS at 5.9 GeV/c incident momentum, 90° center of mass. This experiment confirms the strong quark flow dependence of two-body hadron-hadron scattering at large angle. At 9.9 GeV/c an upper limit had been set for the ratio of cross sections for (p¯p→p¯p)(pp→pp) at 90° c.m., with the ratio less than 4%. The present experiment was performed at lower energy to gain sensitivity, but was still within the fixed angle scaling region. A ratio R(p¯ppp)≈140 was measured at 5.9 GeV/c, 90° c.m. in comparison to a ratio near 1.7 for small angle scattering. In addition, many other reactions were measured, often for the first time at 90° c.m. in the scaling region, using beams of π±, K±, p, and p¯ on a hydrogen target. There are similar large differences in cross sections for other reactions: R(K−p→π+Σ−K−p→π−Σ+)≈112, for example. The relative magnitudes of the different cross sections are consistent with the dominance of quark interchange in these 90° reactions, and indicate that pure gluon exchange and quark-antiquark annihilation diagrams are much less important. The angular dependence of several elastic cross sections and the energy dependence at a fixed angle of many of the reactions are also presented.

21 data tables

Cross sections at 90 degrees in the centre-of-mass.

No description provided.

No description provided.

More…

Hard exclusive hadron nucleon scattering and color transparency

Heppelmann, S. ; Wu, J.Y. ; Appel, R. ; et al.
Nucl.Phys.A 527 (1991) 581C-583C, 1991.
Inspire Record 327578 DOI 10.17182/hepdata.36761

We present preliminary results on the measurement of a variety of exclusive hadron interactions at center of mass scattering angles of 90°. Data are also presented which show the relative transparency of nuclei to πp and pp elastic scattering in this kinematic range.

3 data tables

No description provided.

No description provided.

No description provided.


Comparison of Exclusive Reactions at Large $T$

Baller, B.R. ; Blazey, G.C. ; Courant, H. ; et al.
Phys.Rev.Lett. 60 (1988) 1118-1121, 1988.
Inspire Record 264273 DOI 10.17182/hepdata.3063

Cross sections or upper limits are reported for 12 meson-baryon and two baryon-baryon reactions for an incident momentum of 9.9 GeV/c, near 90° c.m.: π±p→pπ±,pp±,π+°±,K+Σ±, (Λ0/Σ0)K0; K±p→pK±; p±p→pp. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

2 data tables

No description provided.

No description provided.


Charged Pion Production in 32-{GeV}/$c K^+ p$ Interactions

The French-Soviet & CERN-Soviet collaborations Ajinenko, I.V. ; Belokopitov, Y.A. ; Chliapnikov, P.V. ; et al.
Z.Phys.C 4 (1980) 181, 1980.
Inspire Record 141743 DOI 10.17182/hepdata.16626

Final data on topological cross sections are presented. Inclusive single particle distributions for the reactionsK+p→ π±X at 32 GeV/c are discussed and compared with data at lower energies. Early scaling in the fragmentation regions is confirmed, while cross sections in th central region continue to rise with energy even faster than inpp interactions. Thex-andpT-dependence of the π+/π− ratio inK+p interactions is discussed and a comparison of reactionsK+p→ π±X andK−p→ π±X at 32 GeV/c is made in the context of constituent models. We also present transverse momentum distributions, show prominent seagull effects and study how they are influenced by resonance production.

4 data tables
More…

$\Lambda$ and $\bar{\Lambda}$ Polarization in $K^\pm p$ Interactions at 32-{GeV}/$c$

The French-Soviet & CERN-Soviet collaborations Faccini-Turluer, M.L. ; Barloutaud, R. ; Cochet, C. ; et al.
Z.Phys.C 1 (1979) 19, 1979.
Inspire Record 132913 DOI 10.17182/hepdata.19291

Data on Λ and\(\bar \Lambda \) polarization inK±p interactions at 32 GeV/c are presented. A comparison is made between the results of these two experiments as well as with the data at lower energies. The contribution of the different production mechanisms to the Λ(\(\bar \Lambda \)) polarization are discussed.

2 data tables

Data are presented on figures only. DATA NOT ENCODED.

No description provided.