K+ production far below the free nucleon-nucleon threshold has been investigated in collisions of 36Ar on 12C, natTi, and 181Ta targets at an incident energy of 92 MeV per nucleon. The cross sections for K+ production have been inferred from the observed muon decays of positive kaons. The results are discussed in the framework of a participant-spectator model and are compared to proton induced K+ production and to subthreshold pion production experiments.
Three different production modes are assumed: (C=ISOTROPIC) isotropic emmision inthe lab frame with a kinetic energy EKIN(K) = 35 MeV, (C=SPECTRUM) isotropic emmision inthe lab frame with a kinetic energy spectrum from S. Gosh, PR C45,R518, (C=FIREBALL) isotropic emmision in the fireball frame with a kinetic ener gy EKIN(K) = 35 MeV.
Semi-inclusive triple differential multiplicity distributions of positively charged kaons have been measured over a wide range in rapidity and transverse mass for central collisions of $^{58}$Ni with $^{58}$Ni nuclei. The transverse mass ($m_t$) spectra have been studied as a function of rapidity at a beam energy 1.93 AGeV. The $m_t$ distributions of K^+ mesons are well described by a single Boltzmann-type function. The spectral slopes are similar to that of the protons indicating that rescattering plays a significant role in the propagation of the kaon. Multiplicity densities have been obtained as a function of rapidity by extrapolating the Boltzmann-type fits to the measured distributions over the remaining phase space. The total K^+ meson yield has been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented in comparison to existing data. The low total yield indicates that the K^+ meson can not be explained within a hadro-chemical equilibrium scenario, therefore indicating that the yield does remain sensitive to effects related to its production processes such as the equation of state of nuclear matter and/or modifications to the K^+ dispersion relation.
No description provided.
Charged particle production in central S-S collisions at 200 GeV/ c per nucleon has been studied by the WA94 experiment at the CERN-SPS. Particle identification has been provided by the Omega RICH, while a silicon telescope in the Omega spectrometer and an array of MultiWire Proportional Chambers have been used to trace particles through the RICH detector. Production ratios and transverse mass spectra for π ± , K ± and p( p ) at central rapidity and p T > 1.3 GeV/ c are presented.
Distributions are fitted with (1/MT**1.5)*DSIG/DMT = CONST*EXP(-MT/SLOPE).
1.54 GeV ratio is calculated from the fit to the MT distribution.
1.54 GeV ratio is calculated from the fit to the MT distribution.
Transverse mass spectra of pions, kaons, and protons from the symmetric heavy-ion collisions 200 A GeV S+S and 158 A GeV Pb+Pb, measured in the NA44 focusing spectrometer at CERN, are presented. The mass dependence of the slope parameters provides evidence of collective transverse flow from expansion of the system in heavy-ion induced central collisions.
(1/MT)*d(N)/d(MT) = A *exp(-MT/SLOPE).
(1/MT)*d(N)/d(MT) = A *exp(-MT/SLOPE).
The SLOPE from the parameterization of (1/MT)*d(N)/d(MT) = A*exp(-MT/SLOPE)is fitted as follows SLOPE = CONST(C=1) + M(hadron)*CONST(C=2)**2.
Proton distributions at midrapidity have been measured for 158A·GeV Pb+Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A·GeV S+S and 158A·GeV Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T fo and mean collective flow velocity 〈β〉 are extracted. Preliminary results of the particle ratios of K − K + and p p are discussed in the context of cascade models of RQMD and VENUS.
CENTRAL COLLISIONS: SIG(TRIG)/SIG(GEOM)=10%.
Preliminary inclusive spectra of negative hadrons, net protons and neutral strange particles are presented, measured by the NA49 experiment in central Pb+Pb collisions at 158 GeV per nucleon. Comparison of their yields with those from the lighter S+S system suggests that the yields scale approximately with the number of participating nucleons.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
CENTRAL COLLISIONS, PRELIMINARY DATA.
None
CENTRAL EVENTS: 10% OF SIG(GEOM).
Single particle distributions of π ± , K ± , p , p and d near mid-rapidity from 450 GeV/c p A and 200 GeV/c per nucleon SA collisions are presented. Inverse slope parameters are extracted from the transverse mass spectra, and examined for indications of collective phenomena. Proton and antiproton yields are determined for different projectile-target combinations. First results from 160 GeV/c per nucleon PbPb collisions are presented.
No description provided.
PRELIMINARY DATA FOR CENTRAL EVENTS.
None
PRELIMINARY DATA FOR CENTRAL EVENTS.
In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.
No description provided.
The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.