Date

Observation of a $\Lambda_b^0-\overline{\Lambda}_b^0$ production asymmetry in proton-proton collisions at $\sqrt{s} = 7 \textrm{ and } 8\,\textrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
JHEP 10 (2021) 060, 2021.
Inspire Record 1888216 DOI 10.17182/hepdata.114013

This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15

0 data tables match query

Measurement of the production cross section of prompt $\Xi^0_{\rm c}$ baryons in p$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
Eur.Phys.J.C 85 (2025) 86, 2025.
Inspire Record 2789570 DOI 10.17182/hepdata.155330

The transverse momentum ($p_{\rm T}$) differential production cross section of the promptly produced charm-strange baryon $\Xi_{\rm c}^{0}$ (and its charge conjugate $\overline{\Xi_{\rm c}^{0}}$) is measured at midrapidity via its hadronic decay into ${\rm \pi^{+}}\Xi^{-}$ in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector at the LHC. The $\Xi_{\rm c}^{0}$ nuclear modification factor ($R_{\rm pPb}$), calculated from the cross sections in pp and p$-$Pb collisions, is presented and compared with the $R_{\rm pPb}$ of $\Lambda_{\rm c}^{+}$ baryons. The ratios between the $p_{\rm T}$-differential production cross section of $\Xi_{\rm c}^{0}$ baryons and those of $\mathrm {D^0}$ mesons and $\Lambda_{\rm c}^{+}$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt $\Xi^0_{\rm c}$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p$-$Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity extrapolated down to $p_{\rm T}$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p$-$Pb collisions at midrapidity.

0 data tables match query

Search for Neutrino-Induced Neutral Current $\Delta$ Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis

The MicroBooNE collaboration Abratenko, P. ; An, R. ; Anthony, J. ; et al.
Phys.Rev.Lett. 128 (2022) 111801, 2022.
Inspire Record 1937333 DOI 10.17182/hepdata.114860

We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range

0 data tables match query

Study of charm hadronization with prompt $\Lambda^+_\mathrm{c}$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 01 (2024) 128, 2024.
Inspire Record 2679262 DOI 10.17182/hepdata.135973

The production of prompt $\Lambda^+_\mathrm{c}$ baryons is measured via the exclusive decay channel $\Lambda^+_\mathrm{c}$$\to$ pK$^-\pi^+$ at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb$^{-1}$, respectively. The measurements are performed within the $\Lambda^+_\mathrm{c}$ rapidity interval $\vert y \vert$$\lt$ 1 with transverse momentum ($p_\mathrm{T}$) ranges of 3-30 and 6-40 GeV/$c$ for pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of $\Lambda^+_\mathrm{c}$ with $p_\mathrm{T}$$\gt$ 10 GeV/$c$ are strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The $\Lambda^+_\mathrm{c}$ / D$^0$ production ratio is similar in PbPb and pp collisions at $p_\mathrm{T}$$\gt$ 10 GeV/$c$, suggesting that the coalescence process does not play a dominant role in prompt $\Lambda^+_\mathrm{c}$ baryon production at higher $p_\mathrm{T}$.

0 data tables match query

Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Lett.B 750 (2015) 360-366, 2015.
Inspire Record 1351909 DOI 10.17182/hepdata.73320

The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However no model perfectly explains the experimental results in the whole pseudo-rapidity range. The experimental data indicate the most abundant neutron production rate relative to the photon production, which does not agree with predictions of the models.

0 data tables match query

First observation of strange baryon enhancement with effective energy in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 03 (2025) 029, 2025.
Inspire Record 2830416 DOI 10.17182/hepdata.157267

The production of (multi-)strange hadrons is measured at midrapidity in proton--proton collisions at $\sqrt{s} = 13$ TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval ${|\eta|<0.5}$ and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters. The latter provides information on the effective energy, i.e. the energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of K$^0_{\rm S}$, $\Lambda+{\bar \Lambda}$, and $\Xi^{-}+\overline{\Xi}^{+}$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.

0 data tables match query

Production of $\Lambda_\mathrm{c}^+$ baryons in proton-proton and lead-lead collisions at $\sqrt{s_\mathrm{NN}}=$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135328, 2020.
Inspire Record 1738943 DOI 10.17182/hepdata.88290

The differential cross sections of $\Lambda_\mathrm{c}^+$ baryon production are measured via the exclusive decay channel $\Lambda_\mathrm{c}^+ \to $pK$^-\pi^+$, as a function of transverse momentum ($p_\mathrm{T}$) in proton-proton (pp) and lead-lead (PbPb) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC. The measurement is performed within the $\Lambda_\mathrm{c}^+$ rapidity interval $|y|<$1.0 in the $p_\mathrm{T}$ range of 5-20 GeV/$c$ in pp and 10-20 GeV/$c$ in PbPb collisions. The observed yields of $\Lambda_\mathrm{c}^+$ for $p_\mathrm{T}$ of 10-20 GeV/$c$ suggest a possible suppression in central PbPb collisions compared to pp collisions. The $\Lambda_\mathrm{c}^+/$D$^0$ production ratio in pp collisions is compared to theoretical models. In PbPb collisions, this ratio is consistent with the result from pp collisions in their common $p_\mathrm{T}$ range.

0 data tables match query

$\rm \Lambda_{c}^{+}$ production and baryon-to-meson ratios in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 127 (2021) 202301, 2021.
Inspire Record 1829739 DOI 10.17182/hepdata.114213

The prompt production of the charm baryon $\rm \Lambda_{c}^{+}$ and the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$TeV. These new measurements show a clear decrease of the $\rm \Lambda_{c}^{+}/\mathrm {D^0}$ ratio with increasing transverse momentum ($p_{\rm T}$) in both collision systems in the range $2

0 data tables match query

Exploring the non-universality of charm hadronisation through the measurement of the fraction of jet longitudinal momentum carried by $\Lambda_{\rm c}^+$ baryons in pp collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 109 (2024) 072005, 2024.
Inspire Record 2628372 DOI 10.17182/hepdata.151164

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by $\Lambda_{\rm c}^{+}$ baryons, $z^{\mathrm{ch}}_\mathrm{||}$, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at $\sqrt{s}=13$ TeV at the LHC, with $\Lambda_{\rm c}^{+}$ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of $3 \leq p_{\rm T}^{\Lambda_{\rm c}^{+}} < 15$ GeV/$c$ and $7 \leq p_{\rm T}^{\rm jet\;ch} < 15$ GeV/$c$, respectively. The $z^{\mathrm{ch}}_\mathrm{||}$ distribution is compared to a measurement of ${\rm D}^0$-tagged charged jets in pp collisions as well as to PYTHIA 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronisation models which include colour correlations beyond leading-colour in the string formation.

0 data tables match query

Strangeness production in deep-inelastic positron proton scattering at HERA.

The H1 collaboration Aid, S. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 480 (1996) 3-34, 1996.
Inspire Record 421030 DOI 10.17182/hepdata.44711

Measurements are presented of $K~0$ meson and $\Lambda$ baryon production in deep-inelastic positron-proton scattering (DIS) in the kinematic range $10 < Q~2 < 70\,$GeV$~2$ and $10~{-4} < x < 10~{-2}$. The measurements, obtained using the H1 detector at the HERA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken-$x$. Comparisons of the $x_F$ spectra, where $x_F$ is the fractional longitudinal momentum in the hadronic centre-of-mass frame, with results from electron-positron annihilation are made. The $x_F$ spectra and the $K~0$ ``seagull'' plot are compared with previous DIS results. The mean $K~0$ and $\Lambda$ multiplicities are studied as a function of the centre-of-mass energy $W$ and are observed to be consistent with a logarithmic increase with $W$ when compared with previous measurements. A comparison of the levels of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of $0.9\,$nb, at the $95\%$ confidence level, is placed on the cross-section for QCD instanton induced events.

0 data tables match query