This paper presents measurements of production cross sections and inelastic cross sections for the following reactions: 60 GeV/$c$ protons with C, Be, Al targets and 120 GeV/$c$ protons with C and Be targets. The analysis was performed using the NA61/SHINE spectrometer at the CERN SPS. First measurements were obtained using protons at 120 GeV/$c$, while the results for protons at 60 GeV/$c$ were compared with previously published measurements. These interaction cross section measurements are critical inputs for neutrino flux prediction in current and future accelerator-based long-baseline neutrino experiments.
Results of production cross section measurements on proton beams. Measured channeles are p+C/Be/Al at 60 GeV and p+C/Be at 120 GeV.
This paper presents several measurements of total production cross sections and total inelastic cross sections for the following reactions: $\pi^{+}$+C, $\pi^{+}$+Al, $K^{+}$+C, $K^{+}$+Al at 60 GeV/c, $\pi^{+}$+C and $\pi^{+}$+Al at 31 GeV/c . The measurements were made using the NA61/SHINE spectrometer at the CERN SPS. Comparisons with previous measurements are given and good agreement is seen. These interaction cross sections measurements are a key ingredient for neutrino flux prediction from the reinteractions of secondary hadrons in current and future accelerator-based long-baseline neutrino experiments.
Results of production cross section measurements on $\pi^+$ and $K^+$ beams. Measured channeles are $\pi^+$+C, $\pi^+$+Al, $K^+$+C, and $K^+$+Al at 60 GeV/c and $\pi^+$+C and $\pi^+$+Al at 31 GeV/c.
Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of $\pi^\pm$, $K^\pm$, p, $K^0_S$ and $\Lambda$ are measured with high precision. These measurements are essential for improved calculations of the initial neutrino fluxes in the T2K long-baseline neutrino oscillation experiment in Japan. A comparison of the NA61/SHINE measurements with predictions of several hadroproduction models is presented.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
The double differential $\pi^+$ production cross section in the laboratory system for p+C interactions at 31 GeV$/c$. The results are presented as a function of momentum, $p$ (in [GeV/$c$]), in different angular intervals, $\theta$ (in [mrad]). The statistical and systematic errors are quoted.
Inclusive production of $\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~\GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120\,\pm0.006\;(stat.)\,\pm 0.010\;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
Double-differential yield $\frac{d^2n}{dydp_{_T}}$.
Double-differential yield $\frac{d^2n}{dydm_{_T}}$.
Double-differential yields, $\frac{d^{2}n}{x_{_F}p_{_T}}$ and $f_n(x_{_F},p_{T})$, for $x_{_F}<0$.
The production cross section of 30.92 GeV/$c$ protons on carbon is measured by the NA61/SHINE spectrometer at the CERN SPS by means of beam attenuation in a copy (replica) of the 90-cm-long target of the T2K neutrino oscillation experiment. The employed method for direct production cross-section estimation minimizes model corrections for elastic and quasi-elastic interactions. The obtained production cross section is $\sigma_\mathrm{prod}~=~227.6~\pm~0.8\mathrm{(stat)}~_{-~3.2}^{+~1.9}\mathrm{(sys)}~{-~0.8}\mathrm{(mod)}$ mb. It is in agreement with previous NA61/SHINE results obtained with a thin carbon target, while providing improved precision with a total fractional uncertainty of less than 2$\%$. This direct measurement is performed to reduce the uncertainty on the T2K neutrino flux prediction associated with the re-weighting of the interaction rate of neutrino-yielding hadrons.
Production cross section in p+C interactions at different incident beam momenta.
Production cross section in p+C interactions at different beam momenta. The total uncertainty is the statistical, systematic and model uncertainties added in quadrature.
The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in $^{40}$Ar+$^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$~\GeVc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are placed in between those found in inelastic $p$+$p$ and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical or dynamical models.
Rapidity spectrum of negatively charged pions obtained with $h^-$ method in central Ar+Sc collisions at 30$A$ GeV/$c$ The results of $h^-$ analysis of Ar+Sc collisions used for comparison are published in reference [17]
Rapidity spectrum of negatively charged pions obtained with $h^-$ method in central Ar+Sc collisions at 150$A$ GeV/$c$
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Measurements of inclusive spectra and mean multiplicities of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.
Transverse momentum-rapidity spectrum of pi− produced in inelastic p+p interactions at 31 GeV/c with systematic uncertainties.
The NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) studies the onset of deconfinement in hadron matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in the 20$\%$ most $central$$^7$Be+$^9$Be collisions at beam momenta of 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$ GeV/$c$. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are close to those found in inelastic $p$+$p$ reactions. The new results are compared to the world data on $p$+$p$ and Pb+Pb collisions as well as to predictions of the EPOS, UrQMD, AMPT, PHSD and SMASH models.
Transverse momentum spectra in rapidity slices of PI+ produced in the 20% most central Be+Be collisions at beam momentum 75A GeV/c (collision energy 11.95 GeV). Rapidity values given in the legends correspond to the middle of the corresponding interval. Results presented in this table were obtained using dE/dx analysis method.
Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.