Showing 3 of 3 results
The correlations between flow harmonics $v_n$ for $n=2$, 3 and 4 and mean transverse momentum $[p_\mathrm{T}]$ in $^{129}$Xe+$^{129}$Xe and $^{208}$Pb+$^{208}$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV and 5.02 TeV, respectively, are measured using charged particles with the ATLAS detector. The correlations are sensitive to the shape and size of the initial geometry, nuclear deformation, and initial momentum anisotropy. The effects from non-flow and centrality fluctuations are minimized, respectively, via a subevent cumulant method and event activity selection based on particle production in the very forward rapidity. The results show strong dependences on centrality, harmonic number $n$, $p_{\mathrm{T}}$ and pseudorapidity range. Current models describe qualitatively the overall centrality- and system-dependent trends but fail to quantitatively reproduce all the data. In the central collisions, where models generally show good agreement, the $v_2$-$[p_\mathrm{T}]$ correlations are sensitive to the triaxiality of the quadruple deformation. The comparison of model to the Pb+Pb and Xe+Xe data suggests that the $^{129}$Xe nucleus is a highly deformed triaxial ellipsoid that is neither a prolate nor an oblate shape. This provides strong evidence for a triaxial deformation of $^{129}$Xe nucleus using high-energy heavy-ion collision.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.3< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$Cov_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for peripheral events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ for central events, Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Pb+Pb 5.02 TeV
$\Sigma E_{T}$ vs $N^{rec}_{ch}$ for Xe+Xe 5.44 TeV
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Three_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{2}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ for central events, Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Standard method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{3}$ ratio between Xe+Xe 5.44 TeV and Pb+Pb 5.02 TeV for central events, Combined_subevent method, for , $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality,
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$\rho_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{3}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Two_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$Cov_{4}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$ based Centrality.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$c_{k}$ Standard method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{2})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{3})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$var(v^{2}_{4})$ Combined subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N^{rec}_{ch}$.
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Pb+Pb 5.02 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<2.5, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <2.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{2}$ Three_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{3}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $\Sigma E_{T}$ based Centrality
$\rho_{4}$ Combined_subevent method, for Xe+Xe 5.44 TeV, $|\eta|$<1.0, 0.5< $p_{T}$ <5.0 GeV vs $N_{ch}^{rec}$ based Centrality
The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.
K+/PI+ at y=0.
K+/PI+ at y=0.
<K+>/<PI+>.
<K+>/<PI>+.
Inverse slope parameter T.
Inverse slope parameter T.
Inverse slope parameter T.
Inverse slope parameter T.
K-/PI- at y=0.
K-/PI- at y=0.
<K->/<PI->.
<K->/<PI->.
Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 2360 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=6 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of transverse momentum for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=20 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 900 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 7000 GeV for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
Average transverse momentum in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of the number of charged particles in the event for events with the number of charged particles >=1 having transverse momentum >2500 MeV and absolute(pseudorapidity) <2.5.
The average charged-particle muliplicity per unit of rapidity for ETARAP=0 as a function of the centre-of-mass energy.
The average charged-particle muliplicity per unit of rapidity in the pseudorapidity region -2.5 to 2.5 for events with 2 or more charged particles as a function of the centre-of-mass energy.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.