The proton polarization in the γ d → pn reaction has been measured at a c.m. angle of 90° and photon energies between 350 and 700 MeV, using a carbon polarimeter. The magnitude of the polarization shows a sharp energy dependence with a peak of about −80% at around 500–550 MeV. This feature cannot be explained by conventional models and seems to indicate a new mechanism in the dibaryon system.
AROUND THETA OF 90 DEG.
The polarized target asymmetry in the reaction γ p → π 0 p has been measured at c.m. angles of 30°, 80°, 105° and 120° for incident photon energies below 1 GeV. Two decay photons from π 0 were detected in coincidence at 30°, and at the other angles recoil protons and single photons from π 0 were detected. The results are compared with recent phenomenological analyses.
No description provided.
The polarized target asymmetry for the process γ p → π + n has been measured for incident photon energies below 1.02 GeV over a range of c.m. angles from 40° to 160°. π + mesons from a polarized butanol target were detected by a magnetic spectrometer. The results are compared with predictions given by existing analyses. A tentative interpretation of the data is performed, and a larger contribution of S-wave resonances is suggested. The photocouplings of dominant resonances were hardly changed by the inclusion of new data and they seem to be almost uniquely determined.
No description provided.
Proton polarization in γd→pn has been measured at c.m. angle around 90° and photon energies from 325 to 725 MeV. The polarization increases sharply with the photon energy, reaching a high maximum of (-80±8)% around 500-550 MeV. Such a high polarization with a sharp energy dependence seems to indicate a new effect in the dibaryon system.
No description provided.
The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.
No description provided.
The reactions\(\bar pp \to \bar \Lambda \Lambda \),\(\bar \Lambda \Sigma ^0+ C.C.\),\(\bar \Sigma ^ +\Sigma ^ +\) and\(\bar \Sigma ^ -\Sigma ^ -\) are studied at 2.2 GeV/c. The cross-section, differential cross-section, polarization and spin correlations (between the\(\bar \Lambda \) and Λ hyperons) are discussed.
No description provided.
No description provided.
LAMBDA AND ALAMBDA POLARIZATIONS ASSUMED EQUAL. SPIN CORRELATIONS ALSO ESTIMATED.
The angular dependence of the asymmetry for negative-pion photoproduction on neutrons by linearly polarized photons has been measured for photon energies 260, 300, 350, 400, 450, and 500 MeV at center-of-mass angles 60°, 75°, 90°, 150°, and 120°. The results are compared with theoretical models of low-energy single-pion photoproduction. The observed asymmetry below 400 MeV shows good agreement with predictions of dispersion-theoretical models by Berends, Donnachie, and Weaver and by Schwela. The asymmetry values in the 400-500 MeV energy region suggest that smaller M1− amplitude is more favorable.
No description provided.
No description provided.
No description provided.
The asymmetry of the cross section for π + photoproduction from a polarized butanol target has been measured at a c.m. angle 90° and photon energies between 300 and 900 MeV by a single-arm spectrometer detecting positive pions. Our results indicate that the asymmetry has clear positive peaks at photon energies 400 and 700 MeV with a deep valley at about 600 MeV. The general feature of the results is well reproduced by the phenomenological analyses made by Walker and ourselves; however, the best fit to the polarized target asymmetry data seems to give a somewhat different set of parameters from that given by Walker.
No description provided.
Measurements are presented of the recoil-proton polarization for π0 photoproduction angles near 64° in the c.m. system. The steep angular dependence observed by others at lower energies persists to at least 1500 MeV, and the polarization crosses through zero near 63° over the entire 900-1600-MeV energy interval. Summary fits are made to available recoil-proton polarization data, 950-1250 MeV, and are found to require terms of order cos3θ, but no higher.
Axis error includes +- 0.0/0.0 contribution (?////).
None
No description provided.
No description provided.
No description provided.