An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The properties of the effect observed in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (τ ≅ 80 MeV /c 2 ) are studied. The ω 0 ϱ 0 , A 2 0 π + π − and π + π − π + π − π 0 (non-resonant) channels are found to be coupled with this object. The assignment I G = 1 − is established and an analysis of the √ s behaviour of the density matrix elements for the final state ω 0 ϱ 0 clearly favour J P = 2 + , 4 + … Comparisons are made with present theoretical schemes describing this mass region.
MAJOR CONTRIBUTION TO STRUCTURE OBSERVED AT 1949 +- 10 MEV WITH WIDTH 80 +- 20 MEV.
An experimental analysis of p p interactions between the p p threshold (√ s = 1878 MeV) and √ s = 2 100 MeV leads to clear evidence for an s -channel effect in the reaction p p → π + π − π + π − π 0 at 1949 ± 10 MeV /c 2 (Γ ⋍ 80 MeV /c 2 ) . A comparison is made with the backward elastic scattering and charge-exchange behaviour. An interpretation in terms of an object strongly coupled to mesonic decay modes, with small or middle-sized elasticity ( x ⩽ 0.135 −0.06 +0.13 ) is given. No significant narrow structure is observed in the backward elastic scattering between 1.9 and 2 GeV. The experimental resolution of √ s in this case is 2 MeV.
LOWER MOMENTUM RESULTS WERE REPORTED IN CH. D'ANDLAU ET AL., PL 58B, 223 (1975). TABULATED NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. LALOUM.
The ratios of neutral-current to charged-current cross sections of v and v interactions, seperately, on proton and neutron targets have been measured. The Big European Bubble Chamber (BEBC), filled with deuterium and equipped with an external muon identifier (EMI) and an internal picket fence (IPF), was exposed to the CERN SPS (anti)neutrino wide-band beam. The measured ratios are R v p= = 0.405 ± 0.024 ± 0.021 , R v n = 0.243 ± 0.013 ± 0.016, R v p = 0.301 ± 0.027 ± 0.024 and R v n = 0.490 ± 0.050 ± 0.037 . (The first error is statistical and the second systematic). From combinations of these ratios the following neutral-current chiral coupling constants have been determined: u L 2 = 0.099 ± 0.018 ± 0.008, d L 2 = 0.202 ± 0.020 ± 0.019, u R 2 = 0.020 ± 0.016 ± 0.009 and d R 2 = 0.002 ± 0.017 ± 0.010. These results agree with the predictions of the SU(2) × U(1) standard electroweak model. Assuming ϱ = 1, the corresponding value of sin 2 θ w is found to be 0.247 ± 0.029, whereas a two-parameter fit to the data yields sin 2 θ w = 0.243 ± 0.046 and ϱ = 0.996 ± 0.041.
No description provided.
No description provided.
No description provided.
Nearly 40000 neutrino and antineutrino interactions in BEBC are compared to measure the differences between neon and deuterium in the quark and antiquark distributions and in the nucleon structure functions. The ratio of Ne to D cross sections indicates some decrease betweenx∼0.2 andx∼0.6. They distributions show there is no significant increase in the neon sea, but prefer a small decrease. Taken altogether, thex andy distributions and the measured total cross-sections indicate some change in the shape of the valence distributions. No significant dependence onA is observed for either the shape of the sea or the ratio of longitudinal to transverse cross-sections.
No description provided.
No description provided.
No description provided.
p p annihilations, leading to the production of at least one neutral K meson in the final state, have been studied in the incident momentum region of 700–760 MeV/ c . Topological cross sections and cross sections for the various exclusive final states are presented. Detailed analyses of the different final states have been carried out to study the importance of resonance production and of quasi two-body and quasi three-body processes. A detailed study of the K K π system in the four-body final states shows that the F 1 meson is a spurious effect due to systematic biases. In the momentum range investigated, the C = +1 final states are strongly suppressed.
SUMMARY OF QUASI-TWO-BODY CROSS SECTIONS.
No description provided.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
The three polarization tensor components of the deuteron produced in the H( p , d )π + reaction have been measured for the first time. The experiment was performed using a vertically polarized proton beam produced by the SATURNE accelerator. The deuteron polarization was measured with the POLDER polarimeter. The three polarizing powers t 20 00 , t 21 00 and t 22 00 and the three spin-transfer observables t 20 11 , t 22 11 and t 22 11 have been extracted at a proton kinetic energy of 580 MeV over a wide angular range and at two fixed center-of-mass angles, 132° and 151°, between 800 and 1300 MeV. The six observables, calculated in the C.M. helicity frame, have been compared with predictions of the most refined partial-wave analyses and also with the predictions of a theoretical coupled-channel model which includes the NN-NΔ transition. The comparison between the data and the theory/partial-wave analyses shows some discrepancies which get worse with increasing proton energy. Adding these data to the world database should improve significantly future partial-wave analyses. The A y 0 analyzing power has also been measured over the same kinematical range. The partial-wave analysis predictions are in good agreement with this observable.
No description provided.
No description provided.
No description provided.