Date

Production of $K^0$ Mesons, $\Lambda$ and $\bar{\Lambda}$ Hyperons in $\pi^- p$ Interactions at 40-{GeV}/$c$

Angelov, N.S. ; Dzhmukhadze, S.V. ; Kladnitskaya, E.N. ; et al.
Sov.J.Nucl.Phys. 34 (1981) 686, 1981.
Inspire Record 164733 DOI 10.17182/hepdata.39141

None

25 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of the Production of $\rho^0$ and $\omega$ Resonances in $\pi^- p$ and $\pi^- n$ Interactions at $p$ = 40-{GeV}/$c$

Angelov, N.S. ; Grishin, V.G. ; Kvatadze, R.A. ;
Sov.J.Nucl.Phys. 33 (1981) 828, 1981.
Inspire Record 154327 DOI 10.17182/hepdata.39307

None

1 data table match query

No description provided.


Multi - Pion System Production in Pion - Nucleon Collisions at $p$ = 40-{GeV}/c

Angelov, N.S. ; Grishin, V.G. ; Kvatadze, R.A. ;
Yad.Fiz. 32 (1980) 1342-1350, 1980.
Inspire Record 153217 DOI 10.17182/hepdata.17933

None

0 data tables match query

Study of the Production of Meson Resonances in Pion - Carbon Interactions at $P=40$-{GeV}/$c$

Angelov, N.S. ; Balea, O. ; Boldea, V. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 832, 1981.
Inspire Record 156120 DOI 10.17182/hepdata.160

None

0 data tables match query

INVESTIGATION OF EFFECTS OF PION IDENTITY PRODUCED IN pi- p INTERACTIONS AT 40-GeV/c

Angelov, N.S. ; Akhababian, N.O. ; Grishin, V.G. ; et al.
Sov.J.Nucl.Phys. 35 (1982) 699, 1982.
Inspire Record 167521 DOI 10.17182/hepdata.39159

None

0 data tables match query

INVESTIGATION OF PROPERTIES OF MANY PION SYSTEMS IN pi- p AND pi- n INTERACTIONS AT p = 40-GeV/c

Angelov, N.S. ; Grishin, V.G. ; Kvatadze, R.A. ;
Sov.J.Nucl.Phys. 31 (1980) 333, 1980.
Inspire Record 143367 DOI 10.17182/hepdata.18076

None

0 data tables match query

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


Nuclear-modification factor of charged hadrons at forward and backward rapidity in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Aidala, C. ; Akiba, Y. ; Alfred, M. ; et al.
Phys.Rev.C 101 (2020) 034910, 2020.
Inspire Record 1741109 DOI 10.17182/hepdata.106658

The PHENIX experiment has studied nuclear effects in $p$$+$Al and $p$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV on charged hadron production at forward rapidity ($1.4<\eta<2.4$, $p$-going direction) and backward rapidity ($-2.2<\eta<-1.2$, $A$-going direction). Such effects are quantified by measuring nuclear modification factors as a function of transverse momentum and pseudorapidity in various collision multiplicity selections. In central $p$$+$Al and $p$$+$Au collisions, a suppression (enhancement) is observed at forward (backward) rapidity compared to the binary scaled yields in $p$+$p$ collisions. The magnitude of enhancement at backward rapidity is larger in $p$$+$Au collisions than in $p$$+$Al collisions, which have a smaller number of participating nucleons. However, the results at forward rapidity show a similar suppression within uncertainties. The results in the integrated centrality are compared with calculations using nuclear parton distribution functions, which show a reasonable agreement at the forward rapidity but fail to describe the backward rapidity enhancement.

0 data tables match query

Measurement of the strong coupling constant alpha-s for bottom quarks at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 271 (1991) 461-467, 1991.
Inspire Record 318981 DOI 10.17182/hepdata.38288

We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .

1 data table match query

No description provided.


Version 3
Single electron yields from semileptonic charm and bottom hadron decays in Au$+$Au collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034904, 2016.
Inspire Record 1393529 DOI 10.17182/hepdata.99752

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy-flavor production in minimum bias Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy-flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks due to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au$+$Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV and find the fractions to be similar within the large uncertainties on both measurements for $p_T>4$ GeV/$c$. We use the bottom electron fractions in Au$+$Au and $p$$+$$p$ along with the previously measured heavy flavor electron $R_{AA}$ to calculate the $R_{AA}$ for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region $3<p_T<4$ GeV/$c$.

0 data tables match query