Date

Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

0 data tables match query

Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Lett.B 861 (2025) 139277, 2025.
Inspire Record 2807748 DOI 10.17182/hepdata.156837

This Letter presents a constraint on the total width of the Higgs boson ($\Gamma_H$) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on $\Gamma_H$ is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).

0 data tables match query

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature 607 (2022) 60-68, 2022.
Inspire Record 2104672 DOI 10.17182/hepdata.127765

In July 2012, the ATLAS and CMS Collaborations at the CERN Large Hadron Collider announced the observation of a Higgs boson at a mass of around 125 GeV. Ten years later, and with the data corresponding to the production of 30 times larger number of Higgs bosons, we have learnt much more about the properties of the Higgs boson. The CMS experiment has observed the Higgs boson in numerous fermionic and bosonic decay channels, established its spin-parity quantum numbers, determined its mass and measured its production cross sections in various modes. Here the CMS Collaboration reports the most up-to-date combination of results on the properties of the Higgs boson, including the most stringent limit on the cross section for the production of a pair of Higgs bosons, on the basis of data from proton-proton collisions at a centre-of-mass energy of 13 TeV. Within the uncertainties, all these observations are compatible with the predictions of the standard model of elementary particle physics. Much evidence points to the fact that the standard model is a low-energy approximation of a more comprehensive theory. Several of the standard model issues originate in the sector of Higgs boson physics. An order of magnitude larger number of Higgs bosons, expected to be examined over the next fifteen years, will help deepen our understanding of this crucial sector.

18 data tables match query

Signal strength modifiers per production mode $\mu_i$.

Signal strength modifiers per decay mode $\mu^f$.

Simultaneous coupling measurement $\kappa_V/\kappa_f$

More…

Search for Scalar Diphoton Resonances in the Mass Range $65-600$ GeV with the ATLAS Detector in $pp$ Collision Data at $\sqrt{s}$ = 8 $TeV$

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 113 (2014) 171801, 2014.
Inspire Record 1307756 DOI 10.17182/hepdata.64620

A search for scalar particles decaying via narrow resonances into two photons in the mass range $65-600$ GeV is performed using 20.3 fb$^{-1}$ of $\sqrt{s}$ = 8 TeV $pp$ collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95 % confidence level on the production cross-section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches.

0 data tables match query

Search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2024) 215, 2024.
Inspire Record 2787227 DOI 10.17182/hepdata.150677

Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at $\sqrt{s}$ = 13 TeV. The data set was collected in 2016-2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. Events with a diphoton invariant mass greater than 500 GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1.

2 data tables match query

Figure 2: Observed diphoton invariant mass spectra for the EBEE category for the full Run 2 data set are shown. Also shown are the results of a likelihood fit to the background-only hypothesis. The black, red, green and blue lines indicate the result of the fit functions f1, f2, f3, and f4, respectively. The lower panels show the difference between the data and f1 fit, divided by the statistical uncertainty in the data points. dijet f1 = 1.81866e-22*pow(x,19.5547-1.7634*log(x)), expow1 f2 = 69750*exp(-0.00368224*x)*pow(x, -1.*0.975269*0.975269, invpow1 f3 = 508.838*pow(1+x*0.000294278,-1.*4.5514*4.5514), invpowlin1 f4 = 470.588*pow(1+x* 5.07338e-05,-114.601+0.00817169*x)

Figure 3 top left. Expected and observed 95% CL upper limits on the product of the production cross section and branching fraction as a function of the RS graviton mass $m_{G}$ for the full Run 2 data set are shown. Expected $1\sigma$ and $2\sigma$ limit bands are shown in green and yellow, respectively


Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 842 (2023) 137379, 2023.
Inspire Record 2077557 DOI 10.17182/hepdata.129959

This letter documents a search for flavour-changing neutral currents (FCNCs), which are strongly suppressed in the Standard Model, in events with a photon and a top quark with the ATLAS detector. The analysis uses data collected in $pp$ collisions at $\sqrt{s} = 13$ TeV during Run 2 of the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. Both FCNC top-quark production and decay are considered. The final state consists of a charged lepton, missing transverse momentum, a $b$-tagged jet, one high-momentum photon and possibly additional jets. A multiclass deep neural network is used to classify events either as signal in one of the two categories, FCNC production or decay, or as background. No significant excess of events over the background prediction is observed and 95% CL upper limits are placed on the strength of left- and right-handed FCNC interactions. The 95% CL bounds on the branching fractions for the FCNC top-quark decays, estimated from both top-quark production and decay, are $\mathcal{B}(t\rightarrow u\gamma) < 0.85 \times 10^{-5}$ and $\mathcal{B}(t\to c\gamma) < 4.2 \times 10^{-5}$ for a left-handed $tq\gamma$ coupling, and $\mathcal{B}(t\to u\gamma) < 1.2 \times 10^{-5}$ and $\mathcal{B}(t\to c\gamma) < 4.5 \times 10^{-5}$ for a right-handed coupling.

0 data tables match query

Measurement of the $W^{\pm}Z$ boson pair-production cross section in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 762 (2016) 1-22, 2016.
Inspire Record 1469071 DOI 10.17182/hepdata.76493

The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.

11 data tables match query

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.

More…

High-$E_{\rm T}$ isolated-photon plus jets production in $pp$ collisions at $\sqrt s=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Nucl.Phys.B 918 (2017) 257-316, 2017.
Inspire Record 1499475 DOI 10.17182/hepdata.79948

The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.

1 data table match query

Measured cross sections for isolated-photon plus 2jet production as a function of $\beta^{\rm jet1}$.


Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{s_{NN}}=5.02$ TeV p+Pb collisions measured by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 763 (2016) 313-336, 2016.
Inspire Record 1463284 DOI 10.17182/hepdata.75256

Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using $p+$Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of $\sqrt{s_{NN}}=5.02$ TeV. Charged particles are reconstructed over pseudorapidity $|\eta|<2.3$ and transverse momentum between $0.1$ GeV and $22$ GeV in a dataset corresponding to an integrated luminosity of $1$ $\mu b^{-1}$. The results are presented in the form of charged-particle nuclear modification factors, where the $p+$Pb charged-particle multiplicities are compared between central and peripheral $p+$Pb collisions as well as to charged-particle cross sections measured in pp collisions. The $p+$Pb collision centrality is characterized by the total transverse energy measured in $-4.9<\eta<-3.1$, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the $p+$Pb collision are carried out using the Glauber model and two Glauber-Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around $3$ GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

1 data table match query

$R_{pPb}$ as a function of $p_{T}$ extracted from the invariant yields for six rapidity ranges, for eight centrality intervals, and for different geometrical models used to calculate $\langle T_{Pb} \rangle$.


Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ with the ATLAS detector at $\sqrt{s}=8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 104, 2016.
Inspire Record 1444991 DOI 10.17182/hepdata.76843

This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ channel, using 20.3 fb$^{-1}$ of proton-proton collision data. The data were produced at a centre-of-mass energy of $\sqrt{s} = 8$ TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed $H{\rightarrow\,}WW^{\ast}{\rightarrow\,}e\nu\mu\nu$ signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

1 data table match query

Correction factors from inclusive parton level to fiducial particle level for the jet-veto efficiency with different jet pT thresholds derived with POWHEG NNLOPS+Pythia8. The asterisk on the 25 GeV bin label indicates that the results are for a mixed pT threshold, which is raised from 25 GeV to 30 GeV for jets with 2.5 < |eta| < 4.5, corresponding to the selection used to define the signal regions for the analysis.