We present a new measurement of the K L -K S mass difference ( Δm ) using semileptonic decays of neutral kaons. The measurement yields Δm = (0.5274 ± 0.0029 stat. ± 0.0005 syst. ) × 10 10 ħ/s.
No description provided.
None
Charged conjugate state is assumed.
We study the production characteristics of 557 pairs of charmed hadrons produced in $\pi~{-}-Cu$\ interactions at 230GeV/c using a momentum estimator for charmed hadrons with missing decay products. We find, the mean value of the transverse momentum squared of the charmed pairs is $<$\pts$>=(1.98\pm 0.11\pm 0.09)\;$ GeV$~2$/c$~2$, the mean rapidity difference is $<|$\yd$|>=0.54\pm 0.02\pm 0.24$, and the mean effective mass is $<$\mef$>=(4.45\pm 0.03\pm 0.13)\;$ GeV/c$~2$. Comparing these results with the next-to-leading order QCD predictions we find an agreement for the \yd\ and \mef, whilst the measured mean value of \pts\ is significantly larger than the predicted value.
No description provided.
The C12(γ,p0+1)11B differential cross section has been measured for tagged-photon energies of Eγ=44–98 MeV, at laboratory angles of 30°, 45°, 65°, and 90°. Comparison has been made with four different types of calculation. Results from similar calculations for the photoneutron channel have been compared to previously published C12(γ,n0+1)11C data.
No description provided.
Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.
Per-nucleon cross section ratio for carbon to deuterium.
Per-nucleon cross section ratio for calcium to deuterium.
Per-nucleon cross section ratio for lead to deuterium.
Strange and multistrange baryon and antibaryon production has been studied in sulphur sulphur interactions at 200 GeV/ c per nucleon at central rapidity using the CERN Omega Spectrometer. Particle production ratios and transverse mass spectra are presented for Λ, Ξ − , Λ and Ξ − .
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The E760 Collaboration performed an experiment in the Antiproton Accumulator at Fermilab to study the two photon decay of the ηc(1 1S0) charmonium state formed in p¯p annihilations. This resulted in a new measurement of the mass Mηc=2988.3−3.1+3.3 MeV/c2 and of the product B(ηc→p¯p)×Γ(ηc→γγ) =(8.1−2.0+2.9) eV. We performed a search for the process p¯p→ηc′(2 1S0)→γγ over a limited range of center-of-mass energies. Since no signal was observed, we derived upper limits on the product of branching ratios B(ηc′→p¯p)×B(ηc′→γγ) in the center-of-mass energy range 3584≤ √s ≤3624 MeV. We observed no signal for the nonresonant process p¯+p→γ+γ and obtain upper limits.
No description provided.
No description provided.
The cross sections for the charged current processes ${e~{-}p}\rightarrow{\nu_e+hadrons}$ and, for the first time, ${e~{+}p}\rightarrow{\overline{\nu}_e+hadrons}$ are measured at HERA for transverse momenta larger than 25 GeV.
No description provided.
No description provided.
This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in $ep$ interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of $\xpom$, the momentum fraction lost by the proton, of $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and of $Q~2$. The $\xpom$ dependence is consistent with the form \xpoma where $a=1.30\pm0.08(stat)~{+0.08}_{-0.14}(sys)$ in all bins of $\beta$ and $Q~2$. In the measured $Q~2$ range, the diffractive structure function approximately scales with $Q~2$ at fixed $\beta$. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.
No description provided.
No description provided.
No description provided.