Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
A search for resonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126-139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The analysis is divided into two channels, targeting Higgs boson decays which are reconstructed as pairs of small-radius jets or as individual large-radius jets. Spin-0 and spin-2 benchmark signal models are considered, both of which correspond to resonant $HH$ production via gluon$-$gluon fusion. The data are consistent with Standard Model predictions. Upper limits are set on the production cross-section times branching ratio to Higgs boson pairs of a new resonance in the mass range from 251 GeV to 5 TeV.
The ATLAS detector at the Large Hadron Collider has been used to measure jet substructure modification and suppression in Pb+Pb collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}}=5.02~\mathrm{TeV}$ in comparison with $pp$ collisions at $\sqrt{s}=5.02~\mathrm{TeV}$. The Pb+Pb data, collected in 2018, have an integrated luminosity of $1.72~\mathrm{nb^{-1}}$, while the $pp$ data, collected in 2017, have an integrated luminosity of $260~\mathrm{pb}^{-1}$. Jets used in this analysis are clustered using the anti-$k_{t}$ algorithm with a radius parameter $R=0.4$. The jet constituents, defined by both tracking and calorimeter information, are used to determine the angular scale $r_\mathrm{g}$ of the first hard splitting inside the jet by reclustering them using the Cambridge-Aachen algorithm and employing the soft-drop grooming technique. The nuclear modification factor, $R_\mathrm{AA}$, used to characterize jet suppression in Pb+Pb collisions, is presented differentially in $r_\mathrm{g}$, jet transverse momentum, and in intervals of collision centrality. The $R_\mathrm{AA}$ value is observed to depend significantly on jet $r_\mathrm{g}$. Jets produced with the largest measured $r_\mathrm{g}$ are found to be twice as suppressed as those with the smallest $r_\mathrm{g}$ in central Pb+Pb collisions. The $R_\mathrm{AA}$ values do not exhibit a strong variation with jet $p_\mathrm{T}$ in any of the $r_\mathrm{g}$ intervals. The $r_\mathrm{g}$ and $p_\mathrm{T}$ dependence of jet $R_\mathrm{AA}$ is qualitatively consistent with a picture of jet quenching arising from coherence and provides the most direct evidence in support of this approach.
This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.
A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.
A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.
The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.
A search for lepton-flavor-violating $Z\to e\tau$ and $Z\to\mu\tau$ decays with $pp$ collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb$^{-1}$ of Run 2 $pp$ collisions at $\sqrt{s}=13$ TeV and is combined with the results of a similar ATLAS search in the final state in which the $\tau$-lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying $\tau$-leptons significantly improves the sensitivity reach for $Z\to\ell\tau$ decays. The $Z\to\ell\tau$ branching fractions are constrained in this analysis to $\mathcal{B}(Z\to e\tau)<7.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<7.2\times10^{-6}$ at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: $\mathcal{B}(Z\to e\tau)<5.0\times10^{-6}$ and $\mathcal{B}(Z\to \mu\tau)<6.5\times10^{-6}$ at 95% confidence level.
A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139 fb$^{-1}$ of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.
A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_{\rm{T}}$ jet in addition to the two highest-$p_{\rm{T}}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.