From 2540 Z 0 → τ + τ − events, we determine the inclusive decay branching fractions of the τ -lepton into one and three charged particles to be 0.856 ± 0.006 (stat.) ± 0.003 (syst.) and 0.144 ± 0.006 (stat.) ± 0.003 (syst.), respectively. The leptonic branching fractions are measured to be 0.175 ± 0.008 (stat.) ± 0.005 (syst.) for τ → μν μ ντ and 0.177 ± 0.007 (stat.) ± 0.006 (syst.) for τ → eν e ν τ . We determined the τ lifetime both from three-prong decays using the decay length and from one-prong decays using the impact parameter. The results from the two independent methods agree and yield a combined value of [0.309 ± 0.023 (stat.) ± 0.030 (syst.)] × 10 −12 s.
ALPHAS extracted from the ratio of the branching fractions.
The ratio of the branching fractions for p p →K + K − and p p →π + π − was determined with the CPLEAR detector, by stopping antiprotons in a gaseous hydrogen target at 15 bar pressure. It was found to be BR(K + K − )/BR( π + π − )=0.205± 0.016. The fraction of P-wave annihilation at rest at this target density was deduced to be (38±9)%.
CONST is the fraction of P-wave annihilation in gaseous hydrogen at pressu re of 15 bar. In the SIG/SIG the statistical and systematic errors are added qu adratically.
We have studied (p̄, p) reactions on 12 C , 63 Cu, and 209 Bi to search for possible nuclear states formed ny antiprotons and nuclei. The experiments used the 180 MeV antiproton beam from LEAR, and the high-resolution magnetic spectrometer, SPES II, to detect the outgoing protons. No evidence of antiproton-nucleus states was found. The gross features of the proton spectra are reasonably well described by intranuclear cascade model calculations, which consider proton emission following antiproton annihilations in the target nucleus.
Parameters resulting from the best fits to the proton spectra with the expression D2(SIG)/D(OMEGA)/D(E) = CONST*SQRT(E)*EXP(-E/SLOPE).
We present measurements of the production symmetric high-mass hadron and pion pairs by protons of 200, 300, and 400 GeV, incident on a beryllium target. The two-particle invariant cross section for pion production can be described by the function E1E2d6σdp13dp23=(1.7×10−28)pt−8.4(1−xt)14 cm2/GeV4 (where pt is the mean pt of the two hadrons). Functions of the same form have been used in describing single-pion inclusive production. Equality of the exponents of pt in the two processes is observed, confirming the role of smearing contributions to single-hadron cross sections.
E*D3(SIG)/D3(P) is fitted by CONST*(1-XT)**POWER*PT**POWER.
E1*E2*D6(SIG)/D3(P1)/D3(P2) is fitted by CONST*(1-XT)**POWER*PT**POWER, where PT is (pt1 + pt2)/2.
Inclusive cross sections are presented for 2π and 3π systems with large longitudinal x at the highest intersecting storage ring energies (s=53 GeV for 2π; s=53 and 62 GeV for 3π). The ratio π+π−π−π− rises sharply with increasing x similar to the ratio K+K−, as expected in a quark-model interpretation.
The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The differential cross section is fitted by the equation : E*D3(SIG)/D3(P) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).