A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.
The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.
The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.
The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)
A search for a heavy CP-odd Higgs boson, $A$, decaying into a $Z$ boson and a heavy CP-even Higgs boson, $H$, is presented. It uses the full LHC Run 2 dataset of $pp$ collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The search for $A\to ZH$ is performed in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ final states and surpasses the reach of previous searches in different final states in the region with $m_H>350$ GeV and $m_A>800$ GeV. No significant deviation from the Standard Model expectation is found. Upper limits are placed on the production cross-section times the decay branching ratios. Limits with less model dependence are also presented as functions of the reconstructed $m(t\bar{t})$ and $m(b\bar{b})$ distributions in the $\ell^+\ell^- t\bar{t}$ and $\nu\bar{\nu}b\bar{b}$ channels, respectively. In addition, the results are interpreted in the context of two-Higgs-doublet models.
<b><u>Overview of HEPData Record</u></b><br> <b>Upper limits on cross-sections:</b> <ul> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(tt) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=1">95% CL upper limit on ggF A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20ggF,%20tanbeta=5">95% CL upper limit on ggF A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(tt) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(tt) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20lltt,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(tt) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=0.5">95% CL upper limit on ggF A->ZH(bb) production for tanb=0.5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=1">95% CL upper limit on ggF A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20ggA,%20tanbeta=5">95% CL upper limit on ggF A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=1">95% CL upper limit on bbA A->ZH(bb) production for tanb=1</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=5">95% CL upper limit on bbA A->ZH(bb) production for tanb=5</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=10">95% CL upper limit on bbA A->ZH(bb) production for tanb=10</a> <li><a href="?table=Cross-section%20limits%20for%20vvbb,%20bbA,%20tanbeta=20">95% CL upper limit on bbA A->ZH(bb) production for tanb=20</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=m(tt),L3hi_Zin,ggF-production">m(tt) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=m(bb),2tag,0L,ggF-production">m(bb) distribution in the 2 b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(bb),3ptag,0L,bbA-production">m(bb) distribution in the 3p b-tag 0L region of the vvbb channel</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,bbA-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis with the bbA signal shown</a> <li><a href="?table=m(tt),L3hi_Zin,bbA-production">m(tt) distribution in the L3hi_Zin region of the lltt channel with the bbA signal shown</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin350,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=350 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin400,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=400 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin450,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin500,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=500 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin550,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=550 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin600,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=600 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin700,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=700 GeV hypothesis</a> <li><a href="?table=m(lltt)-m(tt),L3hi_Zin_Hin800,ggF-production">Fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin130,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin150,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin200,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin250,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin300,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin350,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin400,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin450,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin500,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin600,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin700,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,0L_Hin800,ggF-production">Fit discriminant mT(VH) in the 2 b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin130,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=130 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin150,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=150 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin200,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=200 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin250,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=250 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin300,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin350,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=350 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin400,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=400 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin450,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=450 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin500,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=500 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin600,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=600 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin700,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=700 GeV hypothesis</a> <li><a href="?table=mTVH,3ptag,0L_Hin800,bbA-production">Fit discriminant mT(VH) in the 3p b-tag signal region of the vvbb channel for the mH=800 GeV hypothesis</a> <li><a href="?table=mTVH,2tag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,2tag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,2L">Fit discriminant mT(VH) in the 2L region of the vvbb channel</a> <li><a href="?table=mTVH,3ptag,em">Fit discriminant mT(VH) in the em region of the vvbb channel</a> <li><a href="?table=lep3pt,L3hi_Zin">pT(lepton,3) distribution in the L3hi_Zin region of the lltt channel</a> <li><a href="?table=etaHrestVH,L3hi_Zin">eta(H,VH rest frame) distribution in the signal region of the lltt channel</a> <li><a href="?table=ETmiss,2tag,0L">ETmiss distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,2tag,0L">m(top,near) distribution in the 2 b-tag signal region of the vvbb channel</a> <li><a href="?table=ETmiss,3ptag,0L">ETmiss distribution in the 3p b-tag signal region of the vvbb channel</a> <li><a href="?table=mtopnear,3ptag,0L">m(top,near) distribution in the 3p b-tag signal region of the vvbb channel</a> </ul> <b>Observed local significance:</b> <ul> <li><a href="?table=Local%20significance,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Local%20significance,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul> <b>Acceptance and efficiency:</b> <ul> <li><a href="?table=Acceptance*efficiency,%20lltt,%20ggF%20production">ggF A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20lltt,%20bbA%20production">bbA A->ZH->lltt signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20ggF%20production">ggF A->ZH->vvbb signals</a> <li><a href="?table=Acceptance*efficiency,%20vvbb,%20bbA%20production">bbA A->ZH->vvbb signals</a> </ul>
The distribution of the fit discriminant m(lltt)-m(tt) in the signal region of the lltt channel for the mH=450 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
The distribution of the fit discriminant mTVH in the 2 b-tag signal region of the vvbb channel for the mH=300 GeV hypothesis. <br><br><a href="?table=overview">return to overview</a>
This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.
This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.
Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.
Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.
A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.
Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.
Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal
Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.
Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.
Reduced transverse mass ($m_{t}-m_{0}$) spectra of $K^{0}_{S}$ for the 0-40% most central events. NOTE: The spectra are not scaled by $1/N_{Events}$! To compare the data, divide by $N_{Events} = 2.1997626 x 10^{9}$
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
We present data on charged kaons (K+-) and {\phi} mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K and {\phi} mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The {\phi}/K- multiplicity ratio is found to be surprisingly high with a value of 0.52 +- 0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K- transverse-mass spectra can be explained solely by feed- down, which substantially softens the spectra of K- mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze- out temperatures of K+ and K- mesons caused by different couplings to baryons.
Acceptance and efficiency corrected transverse-mass spectra around mid-rapidity.
$K^{+}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 25 and 50 $MeV/c^{2}$.
$K^{-}$ signal and the corresponding background fit for the region covering mid-rapidity and $m_{t}−m_{0}$ between 50 and 75 $MeV/c^{2}$.
Two searches for new phenomena in final states containing a same-flavour opposite-lepton (electron or muon) pair, jets, and large missing transverse momentum are presented. These searches make use of proton--proton collision data, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider, which correspond to an integrated luminosity of 14.7 fb$^{-1}$. Both searches target the pair production of supersymmetric particles, squarks or gluinos, which decay to final states containing a same-flavour opposite-sign lepton pair via one of two mechanisms: a leptonically decaying Z boson in the final state, leading to a peak in the dilepton invariant-mass distribution around the Z boson mass; and decays of neutralinos (e.g. $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$), yielding a kinematic endpoint in the dilepton invariant-mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted in simplified models of gluino-pair (squark-pair) production, and provide sensitivity to gluinos (squarks) with masses as large as 1.70 TeV (980 GeV).
Dilepton invariant mass distribution in SRZ.
Dilepton transverse momentum distribution in SRZ.
Missing transverse momentum distribution in SRZ.
Two searches for supersymmetric particles in final states containing a same-flavour opposite-sign lepton pair, jets and large missing transverse momentum are presented. The proton-proton collision data used in these searches were collected at a centre-of-mass energy $\sqrt{s}=8$ TeV by the ATLAS detector at the Large Hadron Collider and corresponds to an integrated luminosity of 20.3 fb$^{-1}$. Two leptonic production mechanisms are considered: decays of squarks and gluinos with $Z$ bosons in the final state, resulting in a peak in the dilepton invariant mass distribution around the $Z$-boson mass; and decays of neutralinos (e.g. $\tilde{\chi}^{0}_{2} \rightarrow \ell^{+}\ell^{-}\tilde{\chi}^{0}_{1}$), resulting in a kinematic endpoint in the dilepton invariant mass distribution. For the former, an excess of events above the expected Standard Model background is observed, with a significance of 3 standard deviations. In the latter case, the data are well-described by the expected Standard Model background. The results from each channel are interpreted in the context of several supersymmetric models involving the production of squarks and gluinos.
The observed and expected dielectron invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.
The observed and expected dimuon invariant mass distribution in SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions.
The observed and expected $E_T^{miss}$ distribution in the dielectron SR-Z. The negigible estimated contribution from Z+jets is omitted in these distributions. The last bin contains the overflow.