The 132 pbt - 1 of data collected by ALEPH from 1991 to 1994 have been used to analyze η and ω production in τ decays. The following branching fractions have been measured: \(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }} \right) = \left( {1.91 \pm 0.07 \pm 0.06} \right) \times {10^{ - 2}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\omega {h^ - }{\pi ^0}} \right) = \left( {4.3 \pm 0.6 \pm 0.5} \right) \times {10^{ - 3}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {K^ - }} \right) = \left( {2.9_{ - 1.2}^{ + 1.3} \pm 0.7} \right) \times {10^{ - 4}},\)\(B\left( {{\tau ^ - } \to {\nu _\tau }\eta {h^ - }{\pi ^0}} \right) = \left( {1.8 \pm 0.4 \pm 0.2} \right) \times {10^{ - 3}}\) and the 95% C.L. limit B(τ− → ντηπt -) < 6.2 × 10t - 4 has been obtained. The ωπt- and ηπt -π0 rates and dynamics are found in agreement with the predictions made from e+e∼ - annihilation data with the help of isospin invariance (CVC).
$\pi^+\pi^-\pi^0$ mass distribution (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the one-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
$\pi^+\pi^-\pi^0$ mass distributions (two entries per event) in the $\pi^{\pm}\pi^+\pi^-\pi^0$ final state for the two-photon sample. The bin size has been chosen to display the detailed shape of the $\omega$ peak. The non-resonant contribution is represented by a simple polynomial. Non-$\tau$ background has been subtracted. The error has been set to zero if it is smaller than the point size.
Background-subtracted $\omega\pi$ mass spectrum for the data presented here, plotted as black dots. The error has been set to zero if it is smaller than the point size.
Four-fermion events have been selected in a data sample of 5.8 pb −1 collected with the aleph detector at centre-of-mass energies of 130 and 136 GeV. The final states ℓ + ℓ − q q , ℓ + ℓ − ℓ + ℓ − , ν ν q q , and ν ν ℓ + ℓ − have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67±0.38 events from four-fermion processes and 0.14 −0.05 +0.19 from background processes.
The statistical and systematic uncertainties have been combined in quadrature in the background expectations.
A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.
No description provided.
We have measured the cross section of γ+D*± production in p¯p collisions at s=1.8TeV using the Collider Detector at Fermilab. In this kinematic region, the Compton scattering process (gc→γc) is expected to dominate and thus provide a direct link to the charm quark density in the proton. From the 45±18 γ+D*± candidates in a 16.4pb−1 data sample, we have determined the production cross section to be 0.38±0.15(stat)±0.11(syst) nb for the rapidity range |y(D*±)|<1.2 and |y(γ)|<0.9, and for the transverse momentum range pT(D*±)>6GeV/c and 16<pT(γ)<40GeV/c. The measured cross section is compared to a theoretical prediction.
No description provided.
We report a measurement of the ratios of the decay rates of the B~+, B~0 and B~0_s mesons into exclusive final states containing a J/psi meson. The final states were selected from 19.6 pb~{-1} of p-pbar collisions recorded by the Collider Detector at Fermilab. These data are interpreted to determine the bquark fragmentation fractions f_u, f_d and f_s. We also determine the branching fractions for the decay modes B~+ --> J/psi K~+, B~+ --> J/psi K~*(892)~+, B~0 --> J/psi K~0, B~0 --> J/psi K~*(892)~0 and B_s~0 --> J/psi phi(1020). We discuss the implications of these measurements to B meson decay models.
Charge conjugated states are implied. FD is considered as a quark fragmentation fraction.
The inclusive production of the neutral vector mesons K*0(892) and ϕ(1020), and of the tensor meson ${⤪ K}_{2}^{⇒t 0}(1430)$, in hadronic decays of the Z has been measured by the DELPHI detector at LEP. The average production rates per hadronic Z decay have been determined to be 0.77 ± 0.08 K*0(892), 0.104 ± 0.008 ϕ(1020) and ${⤪ K}_{2}^{⇒t 0}(1430)$. The ratio of the tensor-to-vector meson production yields, $«ngle {⤪ K}_{2}^{⇒t 0}(1430)»ngle$, is smaller than the 〈f2(1270)〉/〈ρ0(770)〉 and $«ngle f_{2}^{⌕ime}(1525)»ngle$ ratios measured by DELPHI. The production rates and differential cross sections are compared with the predictions of JETSET 7.4 tuned to the DELPHI data and of HERWIG 5.8. The K*0(892) and ϕ(1020) data are compatible with model predictions, but a large disagreement is observed for the ${⤪ K}_{2}^{⇒t 0}(1430)$.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic errors are combined quadratically.
SIG in (1/SIG) is the total hadronic cross section. The erros are statistical ones. The cross sections SIG(C=A), SIG(C=B), and SIG(C=C) obtained with A) both kaons identified, B) at least one kaon identified, and C) without requiring kaon identification.
SIG in (1/SIG) is the total hadronic cross section. The statistical and systematic erros are combined quadratically. For 0.05<X<0.2 the resulting cross s ection was taken by averaging the results with both identified kaons and with at least one identified kaon, for 0.2<X<1 the results obtained without particle id entification.
Measurements are presented of $K~0$ meson and $\Lambda$ baryon production in deep-inelastic positron-proton scattering (DIS) in the kinematic range $10 < Q~2 < 70\,$GeV$~2$ and $10~{-4} < x < 10~{-2}$. The measurements, obtained using the H1 detector at the HERA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken-$x$. Comparisons of the $x_F$ spectra, where $x_F$ is the fractional longitudinal momentum in the hadronic centre-of-mass frame, with results from electron-positron annihilation are made. The $x_F$ spectra and the $K~0$ ``seagull'' plot are compared with previous DIS results. The mean $K~0$ and $\Lambda$ multiplicities are studied as a function of the centre-of-mass energy $W$ and are observed to be consistent with a logarithmic increase with $W$ when compared with previous measurements. A comparison of the levels of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of $0.9\,$nb, at the $95\%$ confidence level, is placed on the cross-section for QCD instanton induced events.
The XL distribution for K0 particles.
The XL distribution for LAMBDA particles.
Corrected Mean PT**2 for K0 production RE = E+ P --> E+ K0 X.
Deep inelastic charged--current reactions have been studied in $e~+p$ and $e~-p$ collisions at a center of mass energy of about $300\,\gev$ in the kinematic region $Q~2\greater200\,\gev~2$ and $x\greater0.006$ using the ZEUS detector at HERA. The integrated cross sections for $Q~2\greater200\,\gev~2$ are found to be $\sigep=30.3\,{}~{+5.5}_{\mns4.2}\,{}~{+1.6}_{\mns2.6}\,{\rm pb}$ and $\sigem=54.7\,{}~{+15.9}_{\mns\chax 9.8}\,{}~{+2.8}_{\mns3.4}\,{\rm pb}$. Differential cross sections have been measured as functions of the variables $x$, $y$ and $Q~2$. From the measured differential cross sections $d\sigma/dQ~2$, the $W$ boson mass is determined to be $M_W=79\,{}~{+8} _{-7}{}~{+4}_{-4}\,\gev$. Measured jet rates and transverse energy profiles agree with model predictions. A search for charged--current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of $\sigep(Q~2\greater200\,\gev~2;\eta_{\rm max}<2.5)=0.8\,{}_{-0.7}~ {+1.8}\,\pm0.1\,{\rm pb}$.
No description provided.
No description provided.
No description provided.
The B<sup loc="post">0</sup> - B̄<sup loc="post">0</sup> average mixing parameter <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> and b forward-backward asymmetry AFB<sup loc="post">0</sup>(b) are measured from a sample of about 4 200 000 Z → qq̄ events recorded with the ALEPH detector at LEP in the years 1990–1995. High transverse momentum electrons and muons produced in b semileptonic decays provide the tag of the quark flavour and of its charge. The average mixing parameter and the pole b asymmetry are measured to be <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> = 0.1246 ± 0.0051stat ± 0.0052syst, AFB<sup loc="post">0</sup>(b) = 0.1008 ± 0.0043stat ± 0.0028syst. The value of sin<sup loc="post">2</sup>θw<sup loc="post">eff</sup> = 0.23198 ± 0.00092 is extracted from the asymmetry measurement.
ASYM(N=FB,C=OBSERVED) is observed asymmetry including BQ, CQ and backround.
No description provided.
This letter reports the results of the measurement of single photon production in the reaction e + e − → γ + invisible particles at centre-of-mass energies s =130 and 136 GeV and an integrated luminosity of 5.83 pb −1 , collected with the DELPHI detector at LEP. The signal is compatible with the prediction of the Standard Model for the process e + e − → ν ν γ , and the number of neutrino families has been determined to be N ν = 3.1 ± 0.6. Limits have been derived on anomalous neutral gauge boson couplings and on compositeness in the framework of a specific model.
SIG with C=HPC and C=FEMC correpond to the events in the barrel and forwardregion, respectively.