The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).
Data are reported on the momentum distributions of Λ, Λ (1520), φ (1020), Λ and p , inclusively produced between 1° and 2° with respect to one of the primary proton beams at the CERN Intersecting Storage Rings. In addition, the decay angular distribution of the Λ(1520), the ratio of the cross sections for the production of Σ − (1385) and Σ + (1385) and the ratios among different charge states of the pairs Λπ , Λ K, Δ ++ (1232) π and ππ have been measured. These data are confronted with current ideas on fragmentation.
No description provided.
We have observed exclusive production of K + K − and K S O K S O pairs and the excitation of the f′(1515) tensor meson in photon-photon collisions. Assuming the f′ to be production in a helicity 2 state, we determine Λ( f ′ → γγ) B( f ′ → K K ) = 0.11 ± 0.02 ± 0.04 keV . The non-strange quark of the f′ is found to be less than 3% (95% CL). For the θ(1640) we derive an upper limit for the product Λ(θ rarr; γγ K K ) < 0.03 keV (95% CL ) .
Data read from graph.. Errors are the square roots of the number of events.
Data read from graph.. Errors are the square roots of the number of events.
The production of J/ ϑ and ϑ′ has been measured in 250 GeV muon iron interactions. The measured total cross sections are σ ( μ N → μ J/ ϑ X)=0.74±0.14 nb and σ ( μ N → μϑ ′X)=0.16 ± 0.07 nb. An upper limit on the cross section times branching ratio for ϒ production of BR · σ ( μ N → μϒ X) < 5.2 × 10 −38 cm 2 (at 90% confidence level) is obtained. About half the J/ ϑ cross section is found to have Z ⩾ 0.95 (where Z = E (J/ ϑ / ν ). The first-order photon-gluon fusion model agrees well with the measured Q 2 and ν dependence of the J/ ϑ data and is used to extract the gluon momentum distribution. However, higher order QCD effects are needed to explain the Z distribution of the J/ ϑ and the observed broadening of the P t 2 distribution with decreasing Z . The decay angular distributions of the J/ ϑ are found to be flat in the s -channel frame, but there is evidence for polarisation in the t -channel frame.
NUMBERS ARE CROSS-SECTIONS FOR PSI AND PSI(PRIME) BUT CROSS-SECTION*BR.RATIO FOR THE UPSILON.
THE COHERENT PRODUCTION IS NOT SUBTRACTED.
THE COHERENT PRODUCTION IS SUBTRACTED.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilation has been measured at c.m. energies ofW=14, 22 and 34GeV. Using time of flight measurements and Cerenkov counters the full momentum range has been covered. Differential cross sections and total particle yields are given. At particle momenta of 0.4 GeV/c more than 90% of the charged hadrons are pions. With increasing momentum the fraction of pions among the charged hadrons decreases. AtW=34 GeV and a momentum of 5 GeV/c the particle fractions are approximately π±:K±:p,\(\bar p = 0.55:0.3:0.15\). On average an event atW=34 GeV contains 10.3±0.4π±, 2.0±0.2K± and 0.8±0.1p,\(\bar p\). In addition, we present results on baryon correlations using a sample of events where two or more protons and/or antiprotons are observed in the final state.
No description provided.
No description provided.
No description provided.
Dimuon and trimuon events produced by the interaction of 250 GeV muons in an iron target have been studied and are shown to originate predominantly from charm production. The data are used to measure the contribution of charm to the nucleon structure function F 2 . The cross sections for real photoproduction ( Q 2 =0) of charm in the current fragmentation region are derived as a function of photon energy and are found to be ∼0.6% of the total, hadronic photoproduction cross section in this energy range. The measured cross sections are found to be well represented by the photon-gluon fusion model. The charmed quark fragmentation function is obtained by using this model to fit the measured decay muon energy distribution and is found to be well represented by exp(1.6±1.6) Z . The data are used to study the momentum distribution of the gluons in the nucleon. An upper limit of 1.4% (90% confidence level) is set on the branching ratio D→ μν and a model-dependent upper limit on the branching ratio F→ μν is derived.
The charm contribution to the nucleon structure function from the dimuon data.
No description provided.
No description provided.
The distribution of total tranverse energy ΣE T over the pseudorapidity interval −1 < η < 1 and an azimuthal range Δφ =300° has been measured in the UA2 experiment at the CERN p p collider ( s = 540 GeV ) using a highly segmented total absorption caloriter. In the events with very large ΣE T (ΣE T ⪆60 GeV ) most of the transverse energy is found to be contained in small angular regions as expected for high transverse momentum hadron jets. We discuss the properties of a sample of two-jet events with invariant two-jet masses up to 140 GeV c 2 and we measure the cross section for inclusive jet production in the range of jet transverse momenta between 15 and 60 GeV c .
No description provided.
HERE ET IS ACTUALLY THE ENERGY-DENSITY=ET/DELTA OMEGA.
No description provided.
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
ASSUMING ISOTROPIC RHO0 RHO0 PRODUCTION AND ISOTROPIC RHO DECAY.
CROSS SECTIONS FOR DIFFERENT SPIN-PARITY CONTRIBUTIONS.
We have observed ϱ 0 production in e + e − annihilation to hadrons at high energies. The differential cross section at a centre of mass energy W , of 34 GeV, is presented. In the range 0.2< x < 0.7, we measure 0.33 ± 0.06 (stat.) ± 0.07 (syst.), 0.22 ± 0.06 ± 0.05 and 0.22 ± 0.02 ± 0.05 ϱ 0 /event at W = 14, 22 and 34 GeV respectively.
No description provided.
No description provided.
INTEGRATION OVER RESTRICTED X RANGE.
Inclusive π 0 production has been measured at the CERN pp̄ collider, s =540 GeV , for 90° production angle and in a range of transverse momenta between 1.5 and 4.5 GeV/ c . The invariant production cross section is larger than that measured at s = 53 GeV for p-p collisions. The production of μ mesons aand of direct photons is also investigated.
No description provided.