The Standard Model of particle physics currently provides our best description of fundamental particles and their interactions. The theory predicts that the different charged leptons, the electron, muon and tau, have identical electroweak interaction strengths. Previous measurements have shown a wide range of particle decays are consistent with this principle of lepton universality. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. The measurements are of processes in which a beauty meson transforms into a strange meson with the emission of either an electron and a positron, or a muon and an antimuon. If confirmed by future measurements, this violation of lepton universality would imply physics beyond the Standard Model, such as a new fundamental interaction between quarks and leptons.
Likelihood function from the fit to the nonresonant $B^+$ --> $K^+\ell^+ \ell^−$ candidates profiled as a function of $R_K$.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.
The inclusive $b \bar{b}$- and $c \bar{c}$-dijet production cross-sections in the forward region of $pp$ collisions are measured using a data sample collected with the LHCb detector at a centre-of-mass energy of 13 TeV in 2016. The data sample corresponds to an integrated luminosity of 1.6 fb$^{-1}$. Differential cross-sections are measured as a function of the transverse momentum and of the pseudorapidity of the leading jet, of the rapidity difference between the jets, and of the dijet invariant mass. A fiducial region for the measurement is defined by requiring that the two jets originating from the two $b$ or $c$ quarks are emitted with transverse momentum greater than 20 GeV$/c$, pseudorapidity in the range $2.2 < \eta < 4.2$, and with a difference in the azimuthal angle between the two jets greater than 1.5. The integrated $b \bar{b}$-dijet cross-section is measured to be $53.0 \pm 9.7$ nb, and the total $c \bar{c}$-dijet cross-section is measured to be $73 \pm 16$ nb. The ratio between $c \bar{c}$- and $b \bar{b}$-dijet cross-sections is also measured and found to be $1.37 \pm 0.27$. The results are in agreement with theoretical predictions at next-to-leading order.
The total $b \bar{b}$-dijet and $c \bar{c}$-dijet cross-sections and their ratio in the fiducial region, compared with the NLO predictions. The first uncertainty is the combined statistical and systematic uncertainty and the second is the uncertainty from the luminosity. For the predictions, the first uncertainty corresponds to the scale uncertainty, the second to the PDF uncertainty.
Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of the leading jet $\eta$ (pseudorapidity).
Numerical results of $b \bar{b}$- and $c \bar{c}$-dijet cross-sections, $c \bar{c}$/$b \bar{b}$ dijet cross-section ratios and their total uncertainties as a function of $\Delta y^*$.
Using a data sample corresponding to an integrated luminosity of $2.0\,fb^{-1}$, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13 \text{ TeV}$ is studied in the rapidity range ${2.0 < y < 4.5}$ and in the transverse momentum range ${6.5 < p_{T} < 14.0\text{ GeV}}$. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the $J/\psi$ meson is measured using the ${p\bar{p}}$ decay mode and is found to be ${\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18}$. The quoted uncertainties are, in order, statistical, systematic and due to uncertainties on the branching fractions of the ${J/\psi\to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The prompt $\eta_c(1S)$ production cross-section is determined to be ${\sigma_{\eta_c(1S)} = 1.26 \pm 0.11\pm 0.08 \pm 0.14 \,\mu b}$, where the last uncertainty includes that on the ${J/\psi}$ meson cross-section. The ratio of the branching fractions of $b$-hadron decays to the $\eta_c(1S)$ and ${J/\psi}$ states is measured to be ${\mathcal{B}_{b\to\eta_c X}/\mathcal{B}_{b\to J/\psi X} = 0.48 \pm 0.03 \pm 0.03 \pm 0.05}$, where the last uncertainty is due to those on the branching fractions of the ${J/\psi \to p \bar{p}}$ and ${\eta_c\to p \bar{p}}$ decays. The difference between the ${J/\psi}$ and $\eta_c(1S)$ masses is also determined to be ${113.0 \pm 0.7 \pm 0.1\text{ MeV}}$, which is the most precise single measurement of this quantity to date.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for prompt production. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
Differential production cross-sections of $\eta_c$ for prompt production. The uncertainties are statistical, systematic, and due to the $\eta_c\to p \bar{p}$ and $J/\psi\to p \bar{p}$ branching fractions and $J/\psi$ production cross-section.
Relative $\eta_c$ to $J/\psi$ differential production cross-sections for production in $b$-hadron inclusive decays. The uncertainties are statistical, systematic, and due to the ${\eta_c\to p\bar{p}}$ and ${J/\psi\to p\bar{p}}$ branching fractions, respectively.
The production cross-sections of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ mesons in proton-proton collisions at $\sqrt{s}$= 13 TeV are measured with a data sample corresponding to an integrated luminosity of $277 \pm 11$ $\rm pb^{-1}$ recorded by the LHCb experiment in 2015. The $\Upsilon$ mesons are reconstructed in the decay mode $\Upsilon\to\mu^{+}\mu^{-}$. The differential production cross-sections times the dimuon branching fractions are measured as a function of the $\Upsilon$ transverse momentum, $p_{\rm T}$, and rapidity, $y$, over the range $0 < p_{\rm T}< 30$ GeV/c and $2.0 < y < 4.5$. The ratios of the cross-sections with respect to the LHCb measurement at $\sqrt{s}$= 8 TeV are also determined. The measurements are compared with theoretical predictions based on NRQCD.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(1S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(2S) (in pb). The first uncertainty is statistical and the second is systematic.
Double-differential cross-sections times dimuon branching fraction in different bins of $p_T$ and $y$ for $\Upsilon$(3S) (in pb). The first uncertainty is statistical and the second is systematic.
The production of J/$\psi$ mesons is studied in proton-lead collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=8.16$ TeV with the LHCb detector at the LHC. The double differential cross-sections of prompt and nonprompt J/$\psi$ production are measured as functions of the J/$\psi$ transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are compared with theoretical calculations based on collinear factorisation using nuclear parton distribution functions, on the colour glass condensate or on coherent energy loss models.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame measured in the proton-lead beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
The total integrated cross sections for prompt $J/\psi$ production, assuming no polarisation, and $J/\psi$ production from $b$-hadron decays in the rapidity range $-5.0 < y^* < -2.5$ in the nucleon-nucleon centre-of-mass frame measured in the lead-proton beam configuration and transverse momentum 0-14 GeV/c. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty
The double-differential cross sections for prompt $J/\psi$ production, assuming no polarisation, as a function of transverse momentum for the rapidity range $1.5 < y^* < 4.0$ in the nucleon-nucleon centre-of-mass frame. The first quoted uncertainty indicates the bin-by-bin correlated systematic uncertainty and the second is the bin-by-bin uncorrelated systematic uncertainty.
A test of lepton universality, performed by measuring the ratio of the branching fractions of the $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-}$ and $B^{0} \rightarrow K^{*0}e^{+}e^{-}$ decays, $R_{K^{*0}}$, is presented. The $K^{*0}$ meson is reconstructed in the final state $K^{+}\pi^{-}$, which is required to have an invariant mass within 100$\mathrm{\,MeV}c^2$ of the known $K^{*}(892)^{0}$ mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3$\mathrm{\,fb}^{-1}$, collected by the LHCb experiment at centre-of-mass energies of 7 and 8$\mathrm{\,TeV}$. The ratio is measured in two regions of the dilepton invariant mass squared, $q^{2}$, to be \begin{eqnarray*} R_{K^{*0}} = \begin{cases} 0.66~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.03\mathrm{\,(syst)} & \textrm{for } 0.045 < q^{2} < 1.1~\mathrm{\,GeV^2}c^4 \, , \\ 0.69~^{+~0.11}_{-~0.07}\mathrm{\,(stat)} \pm 0.05\mathrm{\,(syst)} & \textrm{for } 1.1\phantom{00} < q^{2} < 6.0~\mathrm{\,GeV^2}c^4 \, . \end{cases} \end{eqnarray*} The corresponding 95.4\% confidence level intervals are $[0.52, 0.89]$ and $[0.53, 0.94]$. The results, which represent the most precise measurements of $R_{K^{*0}}$ to date, are compatible with the Standard Model expectations at the level of 2.1--2.3 and 2.4--2.5 standard deviations in the two $q^{2}$ regions, respectively.
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the low-q2 bin ($0.045 < q^2 < 1.1$ GeV$^{2}/c^4$).
Distributions of the $R(K^{*0})$ delta log-likelihood, $-(\ln L - \ln L_{best})$, for the three trigger categories combined in the central-q2 bin ($1.1 < q^2 < 6.0$ GeV$^{2}/c^4$).
The product of the $\Lambda_b^0$ ($\overline{B}^0$) differential production cross-section and the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ ($\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$) is measured as a function of the beauty hadron transverse momentum, $p_{\rm T}$, and rapidity, $y$. The kinematic region of the measurements is $p_{\rm T}<20~{\rm GeV}/c$ and $2.0<y<4.5$. The measurements use a data sample corresponding to an integrated luminosity of $3~{\rm fb}^{-1}$ collected by the LHCb detector in $pp$ collisions at centre-of-mass energies $\sqrt{s}=7~{\rm TeV}$ in 2011 and $\sqrt{s}=8~{\rm TeV}$ in 2012. Based on previous LHCb results of the fragmentation fraction ratio, $f_{\Lambda_B^0}/f_d$, the branching fraction of the decay $\Lambda_b^0\rightarrow J/\psi pK^-$ is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay $\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0$, and the fourth is due to the knowledge of $f_{\Lambda_b^0}/f_d$. The sum of the asymmetries in the production and decay between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ is also measured as a function of $p_{\rm T}$ and $y$. The previously published branching fraction of $\Lambda_b^0\rightarrow J/\psi p\pi^-$, relative to that of $\Lambda_b^0\rightarrow J/\psi pK^-$, is updated. The branching fractions of $\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^-$ are determined.
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
Products of $\Lambda_b^0$ production cross-sections and the branching fraction $\mathcal{B}(\Lambda_b^0 \rightarrow J\psi pK^-)$ in bins of $p_\rm{T}$ and $y$ in the 2012 data sample.
Products of $\overline{B}^0$ production cross-sections and $\mathcal{B}(\overline{B}^0 \rightarrow J\psi \overline{K}^{*0})$ in bins of $p_\rm{T}$ and $y$ in the 2011 data sample.
The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{fwd})&=&13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the proton beam and \begin{eqnarray*} \sigma_{Z\to\mu^+\mu^-}(\text{bwd}) & =&10.7^{+8.4}_{-5.1}\text{(stat.)}\pm1.0\text{(syst.)}~\text{nb} \end{eqnarray*} in the direction of the lead beam, where the first uncertainty is statistical and the second systematic.
The measured Z production cross-sections in proton-lead collisions, measured in the fiducial region defined in the table, in the forward and backward directions. The statistical uncertainty is defined as the 68% confidence interval with symmetric coverage assuming that the number of candidates follows a Poisson distribution.
The forward-backward ratio measured in the overlap region 2.5 < ABS(YRAP) < 4.0. The first uncertainty is statistical, defined as the 68% confidence interval with symmetric coverage. The second uncertainty is systematic and includes the uncertainty on the acceptance correction factor, BETA, for the difference in the detector acceptance of the muons between the forward and backward directions.
The production of $J/\psi$ mesons with rapidity $1.5<y<4.0$ or $-5.0<y<-2.5$ and transverse momentum $p_\mathrm{T}<14 \mathrm{GeV}/c$ is studied with the LHCb detector in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$. The analysis is based on a data sample corresponding to an integrated luminosity of about $1.6 \mathrm{nb}^{-1}$. For the first time the nuclear modification factor and forward-backward production ratio are determined separately for prompt $J/\psi$ mesons and $J/\psi$ from $b$-hadron decays. Clear suppression of prompt $J/\psi$ production with respect to proton-proton collisions at large rapidity is observed, while the production of $J/\psi$ from $b$-hadron decays is less suppressed. These results show good agreement with available theoretical predictions. The measurement shows that cold nuclear matter effects are important for interpretations of the related quark-gluon plasma signatures in heavy-ion collisions.
Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.
Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the BACKWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.
Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of rapidity in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.