Showing 10 of 786 results
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHuRe1122 versus cHuRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cHdRe1122 versus cHdRe33. Other Wilson coefficients are profiled as well.
Likelihood scan of cW versus cWtil. Other Wilson coefficients are profiled as well.
A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.
Observed number of events within bins of the four-jet mass and the average mass of the two dijets.
Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\overline{m}_{\mathrm{2j}}$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 1.5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 5% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
The 68% probability contour in the $m_{\mathrm{4j}}$ vs. $\alpha$ plane from a signal simulation of a diquark with a width of 10% and a mass of 8.4 TeV, decaying to a pair of vector-like quarks, each with a mass of 2.1 TeV.
Signal differential distributions as a function of four-jet mass for $\alpha_{\mathrm{true}}$ = 0.25, diquark masses of 2, 5, 8.6 TeV and various widths, for all $\alpha$ bins inclusively. The integral of each distribution has been normalized to unity.
The product of acceptance, $A$, and efficiency, $\varepsilon$, of a resonant signal with $\alpha_{\mathrm{true}}$ = 0.25 vs. the diquark mass for various diquark widths, and for all $\alpha$ bins inclusively. The acceptance is defined as the fraction of generated events passing the kinematic selection criteria, while the efficiency is the fraction of signal events satisfying $m_{\mathrm{4j}} > 1.6$ TeV. We also show the signal acceptance alone in the curves where $\varepsilon = 1$.
The four-jet mass distribution in data for 0.22 < $\alpha$ < 0.24, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.24 < $\alpha$ < 0.26, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.26 < $\alpha$ < 0.28, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.28 < $\alpha$ < 0.30, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.30 < $\alpha$ < 0.32, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The four-jet mass distribution in data for 0.32 < $\alpha$ < 0.34, fitted with three background-only functions (Dijet-3p, PowExp-3p and ModDijet-3p), each with three free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV, and $\Gamma/M_{\mathrm{S}}$ = 1.5%, 10% are also shown, with cross sections equal to the observed upper limits at 95% confidence level.
The inclusive four-jet mass distribution in data for $\alpha$ > 0.10, fitted with three background-only functions (Dijet-5p, PowExp-5p and ModDijet-5p), each with five free parameters. Examples of predicted diquark resonances with $\alpha_{\mathrm{true}}$ = 0.25, $M_{\mathrm{S}}$ = 8.6 TeV and $\alpha_{\mathrm{true}}$ = 0.29, $M_{\mathrm{S}}$ = 3.6 TeV, each shown for widths of $\Gamma/M_{\mathrm{S}}$ = 1.5% and 10% are also included, with cross sections equal to the observed upper limits at 95% confidence level.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 1.5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 1.5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 5%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 5%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.25$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and width of the initial resonance Y equal to 10%. The corresponding expected limits and their variations at the 1 and 2 standard deviation (s.d.) levels are also included. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate a mediator width equal to 10%.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.11$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.13$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.15$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.17$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.19$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.21$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.23$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.27$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.29$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.31$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.33$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
The observed 95% CL upper limits on the product of the cross section, branching fraction, and acceptance for resonant production of paired dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}} / M_{\mathrm{Y}} = 0.42$ and widths of the initial resonance Y equal to 1.5, 5, and 10%. Limits are compared to predictions for scalar $\mathrm{S}_{\mathrm{uu}}$ and $\mathrm{S}_{\mathrm{dd}}$ diquarks with couplings to pairs of up and down quarks, $y_{\mathrm{uu}}$ and $y_{\mathrm{dd}}$, and to pairs of vector-like quarks, $y_{\chi}$ and $y_{\omega}$, set appropriately in order to generate the corresponding widths.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.25, and various widths of Y superimposed.
Observed local $p$-value for a four-jet resonance, Y, decaying to a pair of dijet resonances, X, with $\alpha_{\mathrm{true}} = M_{\mathrm{X}}/M_{\mathrm{Y}}$ = 0.29, and various widths of Y superimposed.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 2.0$ TeV, $M_{\chi} = 0.5$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 5.0$ TeV, $M_{\chi} = 1.25$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
The table presents the cumulative cutflow for a signal with $M_{\mathrm{S}} = 8.6$ TeV, $M_{\chi} = 2.15$ TeV and different width hypotheses ($\Gamma/M_{\mathrm{S}} =$ 1.5, 5, and 10%). Each row corresponds to the number of signal events that survive all cuts up to and including the one listed. The percentage in parentheses shows the efficiency of the current cut alone, defined as the ratio of the number of events that survive all cuts up to and including this one to the number of events that survived all previous cuts.
A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the A-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H resonance signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
LO-to-NNLO K-factors for the H-SM interference signals, as a function of mass.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. No contribution from $t \bar{t}$ bound states is included in the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 0.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 1.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 2.5% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 3.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 4.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 5.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 8.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 10.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 13.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 15.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 18.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 21.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{A t \bar t}$ at 95% CL for the A boson with 25.0% width, as a function of the A boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 0.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 1.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 2.5% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 3.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 4.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 5.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 8.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 10.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 13.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 15.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 18.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 21.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Exclusion limits on the coupling modifier $g_{H t \bar t}$ at 95% CL for the H boson with 25.0% width, as a function of the H boson mass. An $\eta_t$ contribution is added to the background.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 1000$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 365$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 400$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 2.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 1000$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 365$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 450$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 500$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 550$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 600$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 650$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 750$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 800$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 850$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 900$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 500$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 950$ GeV, $\Gamma_H/m_H = 21.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.
A search for Higgs boson pair production in the $b \overline{b} γγ$ final state is performed. The proton-proton collision dataset in this analysis corresponds to an integrated luminosity of 308 fb$^{-1}$, consisting of two samples, 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV and 168 fb$^{-1}$ at 13.6 TeV, recorded between 2015 and 2024 by the ATLAS detector at the CERN Large Hadron Collider. In addition to a larger dataset, this analysis improves upon the previous search in the same final state through several methodological and technical developments. The Higgs boson pair production cross section divided by the Standard Model prediction is found to be $μ_{HH} = 0.9^{+1.4}_{-1.1}$ ($μ_{HH} = 1^{+1.3}_{-1.0}$ expected), which translates into a 95% confidence-level upper limit of $μ_{HH}<3.8$. At the same confidence level the Higgs self-coupling modifier is constrained to be in the range $-1.7 < κ_λ< 6.6$ ($-1.8 < κ_λ< 6.9$ expected).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
Weighted di-photon invariant mass distribution summed over all categories and the two data-taking periods. The events in each category are weighted by $log(1+S_{SM}/B)$. $S_{SM}$ is the expected signal yield assuming $\mu_{HH}$=1, while B is the continuum background yield obtained from a fit to the sidebands plus the single Higgs boson background obtained from simulation, all in a ± 5 GeV window around the Higgs boson mass. The lines show the fit results for the continuum background only (light dotted), adding single Higgs boson backgrounds (black dotted) and the full fit (solid).
The 95% CL upper limits on the signal strength, obtained with separate fits to Run-2 and Run-3 data as well as their combination. When computing the significance or upper limit for one data-taking period only, $\mu_{HH}$ of the other period is left free to vary. All other parameters of interest are fixed to their SM expectation.
Observed profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_\lambda$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Observed profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Expected profile likelihood scans of $\kappa_{2V}$. The scans are performed by varying only the coupling modifier of interest, while all other relevant coupling modifiers are fixed to unity.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Confidence level contours at 68% (solid line) and 95% (dashed line) in the $(\kappa_\lambda, \kappa_{2V})$ parameter space, when all other coupling modifiers are fixed to their SM predictions. The corresponding expected contours are shown by the inner and outer shaded regions The SM prediction is indicated by the star, while the best-fit value is denoted by the cross.
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 2. 3he lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the high-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 2. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed $m_{\gamma\gamma}$ distributions for the low-mass categories in Run 3. The lines show the fit results for the continuum background only (light dotted), adding the single Higgs boson background (black dotted) and the full fit (solid).
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
Observed and expected profiled likelihood scans on $\kappa_\lambda$ for the low-mass (LM) and high-mass (HM) regions separately and for their combination. The scan is performed by floating the indicated parameter of interest while fixing all the others to their SM value.
The expected number of events (estimated by using simulation) from the SM HH signals and single Higgs boson production, and the expected number of events from the continuum background, evaluated in the 120 GeV < $m_{\gamma\gamma}$ < 130 GeV window in Run 3 for the different low-mass (LM) and high-mass (HM) categories. For comparison, the number of data events is also shown. The uncertainties in the HH signals and single Higgs boson backgrounds include the systematic uncertainties discussed in Section 6. Asymmetric uncertainties arise primarily from the theory calculation of the SM ggF HH cross section and the large uncertainty in the yield of single Higgs bosons produced in ggF events in association with heavy-flavour jets. The uncertainty in the continuum background is given by the sum in quadrature of the statistical uncertainty from the fit to the data and the spurious signal uncertainty.
This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μj and (c, d) SR-2L-μj of the μ+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (2.0 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>sμ</sub>) = (3.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-eb and (c, d) SR-2L-eb of the e+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>be</sub>) = (1.5 TeV, 2.5) and S̃<sub>1</sub> (m, y<sub>be</sub>) = (2.0 TeV, 2.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-μb and (c, d) SR-2L-μb of the μ+b-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (1.5 TeV, 1.5) and S̃<sub>1</sub> (m, y<sub>bμ</sub>) = (2.0 TeV, 1.5), respectively. Note: the values in the table are normalized by the width of corresponding bin
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>de</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the e+light-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>de</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13]. Constraints from weak charge measurements of protons and nuclei on y<sub>de</sub> couplings derived by Ref. [10] are shown as light magenta line.
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>sμ</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the μ+light-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>sμ</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>be</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the e+b-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>be</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production with only y<sub>bμ</sub> being non-zero obtained from a simultaneous fit to SR-1L and SR-2L of the μ+b-jet channel combining Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (red solid lines) and expected (black dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y<sub>bμ</sub> plane. The observed exclusion should be interpreted as the region above the red line. The yellow inner (green outer) shaded band around the expected limits corresponds to the ±1 σ (±2 σ) variations of the expected limit, accounting for all uncertainties. The observed limit obtained from ATLAS searches for LQ pair production is also shown as dark blue line [13].
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Exclusion limits for minimal models of S̃<sub>1</sub> production obtained from a fit to SR-1L, SR-2L and their combination of (a) the e+light-jet, (b) the μ+light-jet, (c) the e+b-jet and (d) the μ+b-jet channel using Run-2 and Run-3 data. All limits are computed at 95% CL and the observed (solid lines) and expected (dashed lines) exclusion limits are shown in the m(S̃<sub>1</sub>) – y plane. The observed exclusion regions should be interpreted as the region above the solid lines. Constraints from weak charge measurements of protons and nuclei and ATLAS searches for LQ pair production are shown as light magenta and dark blue areas, respectively.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$ej$ and (b) Run 2 SR-2L-$ej$ and (c) Run 3 SR-1-$ej$ and (d) Run 3 SR-2-$ej$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu j$ and (b) Run 2 SR-2L-$\mu j$ and (c) Run 3 SR-1L-$\mu j$ and (d) Run 3 SR-2L-$\mu j$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP of $\tilde{S}$ in (a) Run 2 SR-1L-$eb$ and (b) Run 2 SR-2L-$eb$ and (c) Run 3 SR-1L-$eb$ and (d) Run 3 SR-2L-$eb$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for resonant production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Values of the signal acceptance multiplied by the selection efficiency ($A\times\epsilon$) for DY+SP production of $\tilde{S}$ in (a) Run 2 SR-1L-$\mu b$ and (b) Run 2 SR-2L-$\mu b$ and (c) Run 3 SR-1L-$\mu b$ and (d) Run 3 SR-2L-$\mu b$. The $A \times \epsilon$ values are calculated as the number of events of reconstructed-level signal simulation divided by the total cross-section of the signal process times the integrated luminosity.
Event selection cutflows of SR-1L-$eb$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{be} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$eb$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{be} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$ej$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{de} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$ej$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{de} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$\mu b$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{b\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$\mu b$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{b\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-1L-$\mu j$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{s\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
Event selection cutflows of SR-2L-$\mu j$ for the signal sample with $m(\tilde{S}) = 2$ TeV and $y_{s\mu} = 1.0$ individually for resonant production (RP) and combined Drell-Yan plus single production (DY+SP). The first number in the column for each mass points corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut.
A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of 140 $\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3(\text{stat.})\pm1.4(\text{syst.})\pm 0.3(\text{scale})\pm 0.2(\text{PDF}\oplusα_\text{S})$ GeV, which is in good agreement with other top-quark mass results.
Unfolded number of events in the 2-to-3measurement (not normalized). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)
Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-3 measurement (not normalized)
Unfolded $R(\rho_{s})$ observable in the 2-to-3 measurement (normalized and divided by bin width). The parton level is defined with two stable top-quarks and a jet with $p_{T}>50$ GeV and $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-3 measurement (normalized)
Covariance matrix for statistical and systematic effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-3 measurement (normalized)
Impact of systematic uncertainties on the 2-to-3 unfolded observable. Values are given in percentage of bin content.
Central value and breakdown of the uncertainties affecting the top-quark pole mass extraction from the 2-to-3 unfolded observable.
Unfolded number of events in the 2-to-7measurement (not normalized). The parton level is defined with two neutrinos, one electron and one muon of opposite electric charges, two $b$-jets and an additional jet (extrajet). The four-momentum of the sum of neutrinos has transverse component larger than 30 GeV. The $p_{T}$-leading lepton has $p_{T}>28$ GeV, while the sub-leading has $p_{T}>20$ GeV. The two $b$-jets with have $p_{T}>30$ GeV and the extrajet has $p^\text{extrajet}_{T}>60$ GeV. All the leptons and jets are separated by $\Delta R >0.4$ and have $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured number of events after unfolding, for the 2-to-7 measurement (not normalized)
Covariance matrix for statistical and systematic effects of the measured number of events after unfolding, for the 2-to-7 measurement (not normalized)
Unfolded $R(\rho_{s})$ observable in the 2-to-7 measurement (normalized and divided by bin width). The parton level is defined with two neutrinos, one electron and one muon of opposite electric charges, two $b$-jets and an additional jet (extrajet). The four-momentum of the sum of neutrinos has transverse component larger than 30 GeV. The $p_{T}$-leading lepton has $p_{T}>28$ GeV, while the sub-leading has $p_{T}>20$ GeV. The two $b$-jets with have $p_{T}>30$ GeV and the extrajet has $p^\text{extrajet}_{T}>60$ GeV. All the leptons and jets are separated by $\Delta R >0.4$ and have $|\eta|<2.5$.
Covariance matrix for statistical effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-7 measurement (normalized)
Covariance matrix for statistical and systematic effects of the measured $R(\rho_{s})$ observable after unfolding, for the 2-to-7 measurement (normalized)
Impact of systematic uncertainties on the 2-to-7 unfolded observable. Values are given in percentage of bin content.
Central value and breakdown of the uncertainties affecting the top-quark pole mass extraction from the 2-to-7 unfolded observable.
A search for single production of a vector-like quark $Q$, which could be either a singlet $T$, with charge $\tfrac23$, or a $Y$ from a $(T,B,Y)$ triplet, with charge $-\tfrac43$, is performed using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data correspond to the full integrated luminosity of 140 fb$^{-1}$ recorded with the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis targets $Q \to Wb$ decays where the $W$ boson decays leptonically. The data are found to be consistent with the expected Standard Model background, so upper limits are set on the cross-section times branching ratio, and on the coupling of the $Q$ to the Standard Model sector for these two benchmark models. Effects of interference with the Standard Model background are taken into account. For the singlet $T$, the 95% confidence level limit on the coupling strength $κ$ ranges between 0.22 and 0.52 for masses from 1150 to 2300 GeV. For the $(T,B,Y)$ triplet, the limits on $κ$ vary from 0.14 to 0.46 for masses from 1150 to 2600 GeV.
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the (a–c) SRs, (d–f) W+jets CRs and (g–i) tt̄ CRs after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or that contain two W/Z bosons. The last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Distributions of the VLQ-candidate mass, m<sub>VLQ</sub>, in the W+jets VRs (a-f) and tt̄ VRs (g-i) after the fit to the background-only hypothesis. The columns correspond from left to right to the low-, middle-, and high-p<sub>T</sub><sup>W</sup> bins in each region. Other includes remaining backgrounds from top quarks or containing combinations having two W/Z bosons. Last bin includes overflow. Note: the 'Data' values in the table are normalized by the width of the bin to correspond to the number of events per 100 GeV
Expected (background-only) and observed 95% CL upper limits on the VLQ coupling κ as functions of the VLQ mass m<sub>Q</sub>, for T-singlet (a) and Y-triplet (b) vector-like quarks. The green and yellow bands indicate the systematic uncertainties which are profiled in the fit for the observed upper limits. For the T-singlet model, the result of the latest ATLAS combination of searches for single vector-like top-quarks is overlaid; this includes the decay modes T→H t and T→Z t. These interpretations are limited to parameter combinations for which the model corrections are valid, by restricting the VLQ relative width to Γ<sub>Q</sub>/m<sub>Q</sub> < 0.5, as indicated by the grey dashed line.
Expected (background-only) and observed 95% CL upper limits on the VLQ coupling κ as functions of the VLQ mass m<sub>Q</sub>, for T-singlet (a) and Y-triplet (b) vector-like quarks. The green and yellow bands indicate the systematic uncertainties which are profiled in the fit for the observed upper limits. For the T-singlet model, the result of the latest ATLAS combination of searches for single vector-like top-quarks is overlaid; this includes the decay modes T→H t and T→Z t. These interpretations are limited to parameter combinations for which the model corrections are valid, by restricting the VLQ relative width to Γ<sub>Q</sub>/m<sub>Q</sub> < 0.5, as indicated by the grey dashed line.
Exclusion limit (at 95% CL) for (a) T-singlet and (b) Y-triplet, expressed in terms of an upper limit on the VLQ relative width Γ<sub>Q</sub>/m<sub>Q</sub>, within its validity range for the modelling used, as a function of the VLQ mass m<sub>Q</sub>. This is an alternative presentation of the upper limit set in terms of the coupling κ in Figure 6. As can be seen by the fact the interference-included and signal-only exclusion curves overlap almost entirely, the effect of neglecting the interference is negligible for the vector-like Y-quark.
Exclusion limit (at 95% CL) for (a) T-singlet and (b) Y-triplet, expressed in terms of an upper limit on the VLQ relative width Γ<sub>Q</sub>/m<sub>Q</sub>, within its validity range for the modelling used, as a function of the VLQ mass m<sub>Q</sub>. This is an alternative presentation of the upper limit set in terms of the coupling κ in Figure 6. As can be seen by the fact the interference-included and signal-only exclusion curves overlap almost entirely, the effect of neglecting the interference is negligible for the vector-like Y-quark.
The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.
Summary of statistical tests.
Results from hypothesis test for pairs of spin-parity models.
The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.
Distributions of discriminant for the $2_{m}^{+}$ and $0^{-}$ models.
A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Summary of branching fraction.
Summary of systematic uncertainties for the D->mumu branching fraction measurement with their corresponding contributions in the signal channel.
The distributions of the dipion invariant mass $m_{\pi\pi}$ for the normalization channel in data.
The distributions of the $\mathrm{D}^{*}-\mathrm{D}^0$ mass difference $\Delta m$ for the normalization channel in data.
The distributions of the dimuon invariant mass $m_{\mu\mu}$ for the signal channel in data with the requirement $0.145<\Delta m<0.146$ GeV.
The distributions of the $\mathrm{D}^{*}-\mathrm{D}^0$ mass difference $\Delta m$ for the signal channel in data with the requirement $1.84<m_{\mu\mu}<1.89$ GeV.
The post-fit event yields for the signal, the combinatorial background, the $\mathrm{D}^0\to\pi^+\pi^-$ background, and the $\mathrm{D}^0\to\pi^-\mu^+\nu$ background. The observed numbers of events are given in the Data column. The subrange is in one dimension with a full range in the other dimension.
This paper presents the first observation of top-quark pair production in association with two photons ($t\bar{t}\gamma\gamma$). The measurement is performed in the single-lepton decay channel using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider. The data correspond to an integrated luminosity of 140 fb$^{-1}$ recorded during Run 2 at a centre-of-mass energy of 13 TeV. The $t\bar{t}\gamma\gamma$ production cross section, measured in a fiducial phase space based on particle-level kinematic criteria for the lepton, photons, and jets, is found to be $2.42^{+0.58}_{-0.53}\, \text{fb}$, corresponding to an observed significance of 5.2 standard deviations. Additionally, the ratio of the production cross section of $t\bar{t}\gamma\gamma$ to top-quark pair production in association with one photon is determined, yielding $(3.30^{+0.70}_{-0.65})\times 10^{-3}$.
Measured $t\bar{t}\gamma\gamma$ production fiducial inclusive cross-section in single-lepton decay channel.
Measured ratio of production cross sections of $t\bar{t}\gamma\gamma$ to $t\bar{t}\gamma$ in single-lepton decay channel.
Summary of the relative impact of all the systematic uncertainties, in percentage, on the $t\bar{t}\gamma\gamma$ fiducial inclusive cross section and $R_{t\bar{t}\gamma\gamma/t\bar{t}\gamma}$ grouped into different categories. The category ‘Jet’ corresponds to the effect of JES, jet resolution and JVT uncertainties, ‘Photon’ and ‘Leptons’ include all experimental uncertainties related to photons and leptons (including trigger uncertainties), respectively.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.