We report a search for the production of light quark vector bosons in hadron-nucleus collisions at 100 GeV bombarding energy. We find surprisingly few of these resonances produced. The lack of these particles is though to be due to the absorption by the many modestly energetic nucleons and the few anti-nucleons in the final state.
No description provided.
No description provided.
No description provided.
Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.
Measurements of the tranverse cross section differences.
Measurements of the tranverse cross section differences.
Measurement of the longitudinal cross section difference.
None
No description provided.
P P data are taken from Adams et al, Fermilab-Pub-91/13-E.
Ratio of the spin averaged invariant cross section for PI0 production in p p and pbar p interactions.
We are reporting an improved determination of the electroweak mixing angle sin 2 Θ w from the ratio of ν μ e to ν μ e scattering cross sections. The CHARM II detector was exposed to neutrino and antineutrino wide band beams at the 450 GeV CERN SPS. Including new data collected in 1989 we have obtained 1316 ± 56 ν μ e and 1453 ± 62 ν μ e events. From the ratio of the visible cross sections we determined sin 2 Θ 0 =0.239 ± 0.009(stat) ± 0.007(syst) without radiative corrections and g V e g A e =0.047 ± 0.046 . Combining this last result with recent results on g A e at LEP we obtain g V e = −0.023 ± 0.023.
Systematic error presented includes error from flux normalization 'F'=1.030+- 0.022, no detaled description of the other sources and of the combination pr ocedure.. 'F'.
Without radiative corrections, systematic error combined in quadrature fromconponents listed under SYSTEMATICS.
With radiative corrections as defined by Marciano-Sirlin scheme, see Phys.Rev.D22(1980)2695, Phys.Rev.Lett.46(1981)163, Phys.Rev.D29(1984)945, Phys.Rev.D31(1985)213E, Nucl.Phys.B217(1983)84. CENTRAL VALUE IS FOR M(TOP)=100 GEV, M(HIGGS)=100 GEV.
A measurement of Δσ L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. Data were taken for five energies between 500 and 800 MeV, with statistical errors of ≈ 1.5 mb and an estimated normalization error of 6%. The data, combined with other results, show some evidence for an elastic I =0 spin-singlet resonance with mass ∼ 2213 MeV and width ∼ 74 MeV, or a coupled-triplet resonance with similar mass and width.
SIG(C=PARALLEL)-SIG(C=ANTIPARALLEL) means the difference in the total crosssection with initial parallel and antiparallel longitudinal spin states. The I0 means I=0, these values were found using interpolated Delta(sigma(pp)) data.
We present a new high-statistics measurement of the cross section for the process e+e−→e+e−π+π− at a center-of-mass energy of 29 GeV for invariant pion-pair masses M(π+π−) between 350 MeV/c2 and 1.6 GeV/c2. We observe the f2(1270) and measure its radiative width to be 3.15±0.04±0.39 keV. We also observe an enhancement in the π+π− spectrum near 1 GeV. General agreement is found with unitarized models of the γγ→π+π− reaction that include final-state interactions.
No description provided.
Statistical errors only.
We examine the negative 3π final state produced in association with Δ++(1232) in the reaction γp→Δ++π+π−π− at an incident photon energy of 19.3 GeV. The most prominent enhancement in the 3π spectrum occurs at a mass and with a width consistent with the parameters of the a2(1320). This identification is confirmed by the various angular distributions. The a2 production cross section, corrected for efficiencies and alternate a2 decay modes, is 0.45±0.05 μb.
No description provided.
Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above. The storage ring SQRT(S) has a 7.9 +- 0.2 MeV energy spread around the values given.
Corrected cross section. Statistical and point to point systematic errors combined. Additional systematic error given above.The storage ring SQRT(S) has a 8.2 +- 0.3 MeV energy spread around the values given.
The OPAL detector at LEP is used to measure the branching ratio of theZ0 into invisible particles by measuring the cross section of single photon events ine+e− collisions at centre-of-mass energies near theZ0 resonance. In a data sample of 5.3 pb−1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisibleZ0 decay. With this data we determine theZ0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.
No description provided.
The cross section for K + meson production in collisions of 36 Ar ions on a 48 Ti target has been measured at an incident energy of 92 MeV per nucleon. A description of the experimental set-up is given. Twelve events attributed to monoenergetic muons following the decay of stopped kaons have been identified. From these events, one infers a production cross section of 240 pb. Data are briefly discussed.
No description provided.