This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, $\sigma (p + d \to \Upsilon) / 2\sigma (p + p\to \Upsilon)$, is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x_F < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio $\sigma(p+d)_{DY}/2\sigma(p+p)_{DY}$. This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p+d and p+Cu cross sections from earlier measurements.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the DEUT target.
Differential cross section per nucleon as a function of Feynman X for UPSILON production on the P target.
Differential cross section per nucleon as a function of transverse momentum for UPSILON production on the DEUT target.
The inclusive production of ρ0 mesons was measured in γp andh±p collisions at beam energies of 65 GeV≦Eγ≦175 GeV andEh=80, 140 GeV, respectively, whereh is π orK. Cross sections were determined for all beams and energies as functions ofxF (−0.1≦xF≦1.0),pT (0≦pT≦3.5 GeV/c) and the polar decay angle of the ρ0 by fitting the ρ0 signal in π+π- mass distributions. The ρ0 line shape is found to be distorted from a pure Breit-Wigner distribution throughout most of thexF−pT plane for both photon and hadron beams and a simple explanation is suggested. Throughout the paper emphasis is put on the comparison of photon and hadron beam data. The comparison of cross sections of γp andhp data provides a measure of the Vector Meson Dominance factor throughout thexF−pT range of the ρ0. The ρ0 production at lowpT can be described for both photon and hadron beams by a triple regge model at largexF. Similarly central production is well described by the quark-antiquark fusion model. At largepT there is an excess of ρ0 photoproduction which is consistent with the expected onset of pointlike photon interactions.
No description provided.
No description provided.
No description provided.
Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions ofpT andxF. Data cover the range 0.0
No description provided.
No description provided.
No description provided.
Results are presented on the inclusive photoproduction of λ and λ for incident photon energies between 25 and 70 GeV. The slope parameter of the p T 2 distribution is found to be 2.83±0.1 GeV −2 for λ and 3.28±0.25 GeV −2 for λ . The x F distributions, measured in the range −0.2 to 0.7, show that while λ are produced centrally, λ production extends to more negative values of x F ; the shapes show no energy dependence and are similar to those in pion-induced reactions. The polarization of the produced λ is less than 10%. The results are discussed in terms of vector dominance and quark fusion models.
No description provided.
No description provided.
No description provided.
We present results on inclusive Δ ++ (1236) production in 100 GeV/ c p p interactions. In the region | t | < 1 GeV 2 we find a cross section of 1.29 ± 0.15 mb. Comparisons with pp interactions at high energies show Δ ++ production in pp and p p interactions to be very similar. The decay angular distributions of the Δ ++ are consistent with production predominantly through pion-exchange and the properties of the system recoiling from the Δ ++ are similar to those of real π + p interactions. However, the p π + background is found to show qualitatively similar behaviour. In contrast to the indications of Δ ++ production through pion exchange we also find evidence that events proceeding through diffraction dissociation are more likely to contain Δ ++ than other events. We present results on the forward production of Δ ++ in association with Δ ++ and protons.
No description provided.
No description provided.
No description provided.