Measurement of Differential ZZ+Jets Production Cross Sections in pp Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-001, 2024.
Inspire Record 2773780 DOI 10.17182/hepdata.145862

Diboson production in association with jets is studied in the fully leptonic final states, pp $\to$ (Z$\gamma^*$)(Z/$\gamma^*$)+jets $\to$ 2$\ell$2$\ell'$+jets, ($\ell,\ell'$ = e or $\mu$) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentum $p_\mathrm{T}$, pseudorapidity $\eta$, invariant mass and $\Delta\eta$ of the highest-$p_\mathrm{T}$ and second-highest-$p_\mathrm{T}$ jets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ+jets production in the whole phase space.

17 data tables match query

Differential cross sections normalized to the fiducial cross section as a function of the invariant mass of the four-lepton system, in the on-shell ZZ region

Differential cross sections normalized to the fiducial cross section as a function of the number of jets with $p_T > 30$ GeV

Differential cross sections normalized to the fiducial cross section as a function of the $p_T$ of the highest-$p_T$ jet

More…

Measurement of the dijet mass distribution in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M. ; Amidei, D. ; et al.
Phys.Rev.D 48 (1993) 998-1008, 1993.
Inspire Record 353889 DOI 10.17182/hepdata.22573

The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.

2 data tables match query

Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.

Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.


Exclusive eta production in proton-proton reactions.

Balestra, F. ; Bedfer, Y. ; Bertini, R. ; et al.
Phys.Rev.C 69 (2004) 064003, 2004.
Inspire Record 653991 DOI 10.17182/hepdata.25225

Differential cross sections for the exclusive reaction p⃗p→ppη observed via the η→π+π−π0 decay channel have been measured at Tbeam=2.15GeV, 2.50GeV, and 2.85GeV (excess energies 324MeV, 412MeV, and 554MeV). The influence of the N(1535)S11 resonance is clearly seen in the invariant mass and momentum dependent differential cross sections. The extracted resonance parameters are compatible with existing data. No significant evidence for further resonance contributions has been found. In addition, angular distributions of the ppη final state have been measured. The polar angle distribution of the η shows an anisotropy with respect to the beam axis for the lowest beam energy, which vanishes for the higher energies. The sign of this anisotropy is negative and expected to be sensitive to the dominant production mechanism. In contrast, the proton polar angle in the pp rest frame tends to be more strongly aligned along the beam axis with increasing beam energy. The analyzing power Ay is compatible with zero for all beam energies.

3 data tables match query

Differential cross section for incident kinetic energy 2.15 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.50 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.85 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.


Three- and four-jet final states in photoproduction at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 792 (2008) 1-47, 2008.
Inspire Record 756660 DOI 10.17182/hepdata.45526

Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb^-1. The results are presented for jets with transverse energy E_T^jet>6 GeV and pseudorapidity |eta^jet|<2.4, in the kinematic region given by the virtuality of the photon Q^2<1 GeV^2 and the inelasticity 0.2<y<0.85 and in two mass regions defined as 25<M_nj<50 GeV and M_nj>50 GeV, where M_nj is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an order(alpha alpha_s^2) perturbative QCD calculation.

1 data table match query

Cross section D(SIG)/COS(PSI(3)) as a function of COS(PSI(3)) in two jet invariant mass regions, 25 to 50 and > 50 GeV . PSI(3) is the angle in the 3-jet CM frame between the plane containing the highest energy jet (P=4) and the beam, and the plane containing the three jets .


Vector Meson Production by Polarized Photons at 2.8-GeV, 4.7-GeV, and 9.3-GeV

Ballam, Joseph ; Chadwick, G.B. ; Eisenberg, Y. ; et al.
Phys.Rev.D 7 (1973) 3150, 1973.
Inspire Record 73602 DOI 10.17182/hepdata.43496

We present results on vector-meson photoproduction via γp→Vp in the LBL-SLAC 82-in. hydrogen bubble chamber exposed to a linearly polarized photon beam at 2.8, 4.7, and 9.3 GeV. We find ρ0 production to have the characteristics of a diffractive process, i.e., a cross section decreasing slowly with energy and a differential cross section with slope of ∼ 6.5 GeV−2. Within errors the ρ0 production amplitudes are entirely due to natural-parity exchange. s-channel helicity is conserved to a high degree in the γ→ρ0 transition. We find evidence for small helicity-flip amplitudes for ππ pairs in the ρ0 region. Photoproduction of ω mesons is separated into its natural- (σN) and unnatural- (σU) parity-exchange contributions. The Eγ and t dependence and the spin density matrix of the unnatural-parity-exchange contribution are consistent with a one-pion-exchange process. The natural-parity-exchange part has characteristics similar to ρ0 production. At 9.3 GeV the ratio of σ(ρ0) to σN(ω) is ∼ 7. The slope of the φ differential cross section is ∼ 4.5 GeV−2, smaller than that of ρ0 and ω production. Natural-parity exchange is the main contributor to φ production. No evidence for higher-mass vector mesons is found in ππ, πππ, or KK¯ final states. The s and t dependences of Compton scattering as calculated from ρ, ω, and φ photoproduction using vector-meson dominance agree with experiment, but the predicted Compton cross section is too small by a factor of 2.

1 data table match query

CALCULATED BY THE METHOD OF MOMENTS IN THE OMEGA MASS REGION. BACKGROUND NOT SUBTRACTED (ESTIMATED TO BE <5 PCT).


Photoproduction of pi0 omega off protons for E(gamma) < 3-GeV.

The CB-ELSA collaboration Junkersfeld, J. ; Anisovich, A.V. ; Anton, G. ; et al.
Eur.Phys.J.A 31 (2007) 365-372, 2007.
Inspire Record 748502 DOI 10.17182/hepdata.43511

Differential and total cross-sections for photoproduction of gamma proton to proton pi0 omega and gamma proton to Delta+ omega were determined from measurements of the CB-ELSA experiment, performed at the electron accelerator ELSA in Bonn. The measurements covered the photon energy range from the production threshold up to 3GeV.

3 data tables match query

Slope parameter of the DSIG/DT distribution as a function of energy.

Total cross section before and after the subtraction of the (DELTA+ OMEGA) contribution as a function of energy.

Total cross section for the final state DELTA+ OMEGAas a function of energy.


Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

45 data tables match query

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

4 data tables match query

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

Differential ep cross section for dijet production as a function of the average pseudorapidity the two jets in two transverse energy regions and in the Y region 0.1 to 0.5.

More…

Three Jet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 515 (2001) 17-29, 2001.
Inspire Record 558699 DOI 10.17182/hepdata.46712

Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.

6 data tables match query

Distribution of jet energy fraction X3 = 2E(P=4)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 5 to 100 GeV**2.

Distribution of jet energy fraction X3 = 2E(P=4)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 150 to 5000 GeV**2.

Distribution of jet energy fraction X4 = 2E(P=5)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 5 to 100 GeV**2.

More…

Dijet production in charged and neutral current e+ p interactions at high Q**2.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 429-440, 2001.
Inspire Record 534736 DOI 10.17182/hepdata.46947

Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

1 data table match query

Normalised distribution in ET(C=FOWARD) for NC and CC dijet events. ET(C=FORWARD) is the transverse energy of the most (non-remnant) forward jet.