The production of \chib1P mesons in $pp$ collisions at a centre-of-mass energy of $7\tev$ is studied using $32\invpb$ of data collected with the \lhcb detector. The $\chib1P$ mesons are reconstructed in the decay mode $\chib1P \to \Y1S\g \to \mumu\g$. The fraction of \Y1S originating from \chib1P decays in the \Y1S transverse momentum range $6 < \pt^{\Y1S} < 15\gevc$ and rapidity range $2.0 < y^{\Y1S} < 4.5$ is measured to be $(20.7\pm 5.7\pm 2.1^{+2.7}_{-5.4})%$, where the first uncertainty is statistical, the second is systematic and the last gives the range of the result due to the unknown \Y1S and \chib1P polarizations.
Fraction of $\Upsilon(1S)$ originating from $\chi_b(1P)$ decays for different $p_T(\Upsilon(1S))$ bins, assuming production of unpolarized $\Upsilon(1S)$ and $\chi_b(1P)$ mesons. The first uncertainty is statistical, the second is the systematic uncertainty ($10.21\%$) and the third uncertainty is due to the unknown $\Upsilon(1S)$ and $\chi_b(1P)$ polarizations ($ _{-26}^{+13}\%$). The second and third uncertainties are considerent constant over the measurement fiducial phase-space.
This Letter reports a search for a heavy particle that decays to WW using events produced in pp collisions at sqrt(s) = 7 TeV. The data were recorded in 2011 by the ATLAS detector and correspond to an integrated luminosity of 4.7 fb-1. WW to l nu l' nu'(l, l' = e or mu) final states are considered and the distribution of the transverse mass of the WW candidates is found to be consistent with Standard Model expectations. Upper limits on the production cross section times branching ratio into W boson pairs are set for Randall-Sundrum and bulk Randall-Sundrum gravitons, which result in observed 95% CL lower limits on the masses of the two particles of 1.23 TeV and 0.84 TeV, respectively.
Expected and observed 95% upper limits on cross section time branching ration for pp --> Graviton* < W+ W- >.
Expected and observed 95% upper limits on cross section time branching ration for pp --> Graviton*(bulk) < W+ W- >.
Observed and predicted W+W- transverse mass distribution in the MU-MU channel. Also tabulated are the predictions for a RS graviton of mass 1000 GeV and a bulk RS graviton with mass 600 GeV.
A search for direct pair production of supersymmetric top squarks (stop_1) is presented, assuming the stop_1 decays into a top quark and the lightest supersymmetric particle, neutralino_1, and that both top quarks decay to purely hadronic final states. A total of 16 (4) events are observed compared to a predicted Standard Model background of 13.5+3.7-3.6 (4.4+1.7-1.3) events in two signal regions based on int(Ldt) = 4.7 fb^-1 of pp collision data taken at sqrt(s) = 7 TeV with the ATLAS detector at the LHC. An exclusion region in the stop_1 versus neutralino_1 mass plane is evaluated: 370
.
.
A search is presented for the pair production of light scalar top quarks in sqrt(s) = 7 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider. This analysis uses the full data sample collected during 2011 that corresponds to a total integrated luminosity of 4.7 fb-1. Light scalar top quarks are searched for in events with two opposite-sign leptons (e, mu), large missing transverse momentum and at least one jet in the final state. No excess over Standard Model expectations is found, and the results are interpreted under the assumption that the light scalar top decays to a b-quark in addition to an on-shell chargino whose decay occurs through a virtual W boson. If the chargino mass is 106 GeV, light scalar top quark masses up to 130 GeV are excluded for neutralino masses below 70 GeV.
Distribution of the PT of the leading electron for E-E events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading muon for MU-MU events in the Signal Region, before the application of the leading lepton PT cut.
Distribution of the PT of the leading electron for E-MU events in the Signal Region, before the application of the leading lepton PT cut.
A study of WZ production in proton-proton collisions at sqrt(s) = 7 TeV is presented using data corresponding to an integrated luminosity of 4.6 fb^-1 collected with the ATLAS detector at the Large Hadron Collider in 2011. In total, 317 candidates, with a background expectation of 68+/-10 events, are observed in double-leptonic decay final states with electrons, muons and missing transverse momentum. The total cross-section is determined to be sigma_WZ(tot) = 19.0+1.4/-1.3(stat.)+/-0.9(syst.)+/-0.4(lumi.) pb, consistent with the Standard Model expectation of 17.6+1.1/-1.0 pb. Limits on anomalous triple gauge boson couplings are derived using the transverse momentum spectrum of Z bosons in the selected events. The cross section is also presented as a function of Z boson transverse momentum and diboson invariant mass.
The measured fiducial cross section.
The measured total cross section.
Normalised fiducial cross section in bins of the PT of the Z0.
The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in pp collisions at $\sqrt{s}=7$ TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d$^{2}$N/d$y$d$p_{\rm T}$ at midrapidity $|y|<0.5$ in the range $0
pT-differential production yields of K*0 mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
pT-differential production yields of phi mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results.
Missing transverse energy distribution in the signal region SR1a showing both data points with statistical errors only and the expected standard model background.
Missing transverse energy distribution in the signal region SR2 showing both data points with statistical errors only and the expected standard model background.
Transverse momentum distribution of the leading lepton in the signal region SR1a showing both data points with statistical errors only and the expected standard model background.
A search for squarks and gluinos in final states containing jets, missing transverse momentum and no high-pT electrons or muons is presented. The data represent the complete sample recorded in 2011 by the ATLAS experiment in 7 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 4.7 fb^-1. No excess above the Standard Model background expectation is observed. Gluino masses below 860 GeV and squark masses below 1320 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino, for squark or gluino masses below 2 TeV, respectively. Squarks and gluinos with equal masses below 1410 GeV are excluded. In MSUGRA/CMSSM models with tan beta = 10, A_0 = 0 and mu > 0, squarks and gluinos of equal mass are excluded for masses below 1360 GeV. Constraints are also placed on the parameter space of SUSY models with compressed spectra. These limits considerably extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.
The meff_incl distribution in Signal Region A.
The meff_incl distribution in Signal Region Ap.
The meff_incl distribution in Signal Region B.
A search is presented for direct top squark pair production in final states with one isolated electron or muon, jets, and missing transverse momentum in proton-proton collisions at sqrt(s) = 7 TeV. The measurement is based on 4.7 fb-1 of data collected with the ATLAS detector at the LHC. Each top squark is assumed to decay to a top quark and the lightest supersymmetric particle (LSP). The data are found to be consistent with Standard Model expectations. Top squark masses between 230 GeV and 440 GeV are excluded with 95% confidence for massless LSPs, and top squark masses around 400 GeV are excluded for LSP masses up to 125 GeV.
The observed and standard model prediction for the distribution of missing ET in signal region A.
The observed 95% exclusion limits for the five signal regions.
The expected 95% exclusion limits for the five signal regions.
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.