Forward pi0 production and associated transverse energy flow in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 36 (2004) 441-452, 2004.
Inspire Record 647847 DOI 10.17182/hepdata.46278

Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.

2 data tables match query

The inclusive PI0 cross section as a function of the scaled pion energy in 3 regions of Bjorken X.

The inclusive PI0 cross section as a function of the scaled pion energy in 3 regions of Q**2.


Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

11 data tables match query

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the complete ('all') data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

More…

Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

4 data tables match query

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

Differential ep cross section for dijet production as a function of the average pseudorapidity the two jets in two transverse energy regions and in the Y region 0.1 to 0.5.

More…

Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

1 data table match query

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.


Inclusive $\rho^0$ Production in Anti-neutrino $p$ Charged Current Interactions

Derrick, M. ; Gregory, P. ; Lopinto, F. ; et al.
Phys.Lett.B 91 (1980) 307-310, 1980.
Inspire Record 8534 DOI 10.17182/hepdata.6495

Using data from the Fermilab 15 ft hydrogen bubble chamber, we have studied inclusive ϱ 0 production in antineutrino-proton charged-current interactions. We measure (0.21 ± 0.03) ϱ 0 /event, corresponding to ϱ 0 / π − =0.12 ± 0.02. As a function of Q 2 and for hadronic masses above a threshold region, the ϱ 0 / π − ratio shows little variation. At least 50% of the ϱ 0 's are consistent with coming from the current fragmentation region. The results agree reasonably well with the predictions of the quark fragmentation model of Feynman and field.

1 data table match query

AVERAGE BEAM ENERGY 31 GEV.


Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

1 data table match query

Axis error includes +- 2./2. contribution (RANDOM ERROR).


Measurement of Neutrino - Proton and anti-neutrino - Proton Elastic Scattering

Ahrens, L.A. ; Aronson, S.H. ; Connolly, P.L. ; et al.
Phys.Rev.D 35 (1987) 785, 1987.
Inspire Record 18763 DOI 10.17182/hepdata.23350

Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).

1 data table match query

Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.


Energy dependence of pion and kaon production in central Pb + Pb collisions.

The NA49 collaboration Afanasiev, S.V. ; Anticic, T. ; Barna, D. ; et al.
Phys.Rev.C 66 (2002) 054902, 2002.
Inspire Record 586383 DOI 10.17182/hepdata.31729

Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.

8 data tables match query

The energy dependence of the K+/PI+ ratio at y = 0 in PB PB and AU AU collisions. This table includes the present NA49 data as well as other data CT.= The commmon systematic error on the NA49 points is +-7%. including PHENIX and AGS data.

The energy dependence of the K-/PI- ratio at y = 0 in PB PB and AU AU collisions. This table includes the present NA49 data as well as other data includingPHENIX and AGS data, and preliminary E895 data.. The commmon systematic error on the NA49 points is +-7%.

The energy dependence of the ratio of the K+ to PI+ multiplicities in full phase space from PB PB and AU AU collisions. This table includes the present NA49 data as well as other data including AGS data.. The commmon systematic error on the NA49 points is +-7%.

More…

Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3-GeV wide band muon neutrino beam.

The K2K collaboration Nakayama, S. ; Mauger, C. ; Ahn, M.H. ; et al.
Phys.Lett.B 619 (2005) 255-262, 2005.
Inspire Record 657451 DOI 10.17182/hepdata.41903

Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.

1 data table match query

Ratio of single PI0 NC cross section to the total CC cross section. For reference the total CC cross section is calculated to be 1.1 x 10**-38 CM**2/nucleon averaged over the K2K neutrino beam energy.


A detailed study of the proton structure functions in deep inelastic muon - proton scattering

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Nucl.Phys.B 259 (1985) 189, 1985.
Inspire Record 213461 DOI 10.17182/hepdata.13244

The x and Q 2 dependence of the single photon exchange cross section d 2 σ /d Q 2 d x and the proton structure functions F 2 ( x , Q 2 ) and R ( x , Q 2 ) have been measured in deep inelastic muon proton scattering in the region 0.02 < x < 0.8 and 3 < Q 2 < 190 GeV 2 . By comparing data at different incident muon energies R was found to have little kinematic dependence and an average value of −0.010 ± 0.037 (stat.) ± 0.102 (stat.). The observed deviations from scaling gave the value of Λ MS , the QCD mass scale parameter, to be 105 −45 +55 (stat.) −45 +85 (syst.) MeV. The fraction of the momentum of the nucleon carried by gluons was found to be ∼56% at Q 2 ∼22.5 GeV 2 . It is shown that to obtain a description of the data for F 2 ( x , Q 2 ) together with that measured in deep inelastic electron-proton scattering at lower Q 2 it is necessary to include additional higher twist contributions. The value of Λ MS remains unchanged with the inclusion of these contributions which were found to have an x -dependence of the form x 3 /(1 − x ).

1 data table match query

No description provided.