The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Results onK0 and Λ production ine+e− annihilation at c.m. energies of 14, 22 and 34 GeV are presented. The shape of theK0 and Λ differential cross sections are very similar to each other and to those of π±,K± and\(p(\bar p)\). Scaling violations are observed forK0 production. We obtain a value for the probability to produce strange quark-antiquark pairs relative to that to produce up or down quark-antiquark pairs of 0.35±0.02±0.05. The value ofRh=σ(e+e-→hX)/σµµ is shown to rise steadily with c.m. energy for all particle species. At 34 GeV we find 1.48±0.05K0 and 0.31±0.03 Λ per event. We have searched for possible Λ polarization. The production ofK0's and Λ's in jets is examined as a function ofpT2 and rapidity and compared to that of all charged particles; the yields in two and three jets are also investigated. Results are presented from events with two baryons\((\Lambda ,\bar \Lambda ,por\bar p)\) observed.
None
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.
None
The electronic width Γee and the muonic branching ratioBμμ=Γμμ/Γtot of the Γ(9.46) have been measured as Γee=(1.33±0.14) andBμμ=(2.2±2.0)%. From these values a lower limit of Γtot<23keV for the total width of the Γ(9.46) is obtained.
Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Measurements of inclusive transverse-momentum spectra for charged particles produced in proton-antiproton collisions at √2 of 630 and 1800 GeV are presented and compared with data taken at lower energies.