K*0 and phi Meson Production in Proton-Nucleus Interactions at sqrt(s) = 41.6 GeV

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Eur.Phys.J.C 50 (2007) 315-328, 2007.
Inspire Record 719788 DOI 10.17182/hepdata.43089

The inclusive production cross sections of the strange vector mesons K*0, K*0bar, and phi have been measured in interactions of 920 GeV protons with C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of rapidity and transverse momentum have been measured in the central rapidity region and for transverse momenta up to pT=3.5 GeV/c. The atomic number dependence is parametrised as sigma(pA) = sigma(pN)*A**alpha, where sigma(pN) is the proton-nucleon cross section. Within the phase space accessible, alpha(K*0) = 0.86+/-0.03, alpha(K*0bar) = 0.87+/-0.03, and alpha(phi) = 0.96+/-0.02. The total proton-nucleon cross sections, determined by extrapolating the differential measurements to full phase space, are sigma(pN->K*0) = 5.06+/-0.54 mb, sigma(pN->K*0bar) = 4.02+/-0.45 mb, and sigma(pN->phi) = 1.17+/-0.11 mb. The Cronin effect is observed for the first time for vector mesons containing strange quarks/ compared to the measurements of Cronin et al. for K+- mesons, the measured values of alpha for phi mesons coincide with those of K- mesons for all transverse momenta, while the enhancement for K*0 / K*0bar mesons is smaller.

13 data tables

Measured rapidity distribution for K*0 production in the accessible phase space.

Measured rapidity distribution for K*BAR0 production in the accessible phase space.

Measured rapidity distribution for PHI production in the accessible phase space.

More…

J/psi production and nuclear effects for d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, Stephen Scott ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 96 (2006) 012304, 2006.
Inspire Record 688457 DOI 10.17182/hepdata.57513

J/psi production in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV has been measured by the PHENIX experiment at rapidities -2.2 < y < +2.4. The cross sections and nuclear dependence of J/\psi production versus rapidity, transverse momentum, and centrality are obtained and compared to lower energy p+A results and to theoretical models. The observed nuclear dependence in d+Au collisions is found to be modest, suggesting that the absorption in the final state is weak and the shadowing of the gluon distributions is small and consistent with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-based parameterizations that fit deep-inelastic scattering and Drell-Yan data at lower energies.

11 data tables

J/PSI differential cross section in P+P reactions( times di-lepton branching ratio B=5.9%) as a function of rapidity.

J/PSI nuclear modification factor RDA,as a function of rapidity.

Total cross-section for J/PSI production in P P reactions. The total cross section is estimated using a pythia calculation, normalized to our data. The di-lepton branching ratio used is 5.9%.The systematic error given is due to the fit. The choice of the PDF and model was estimated to have little impact in the value of the total cross section.

More…

Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…

J/psi and psi' production in p, O and S induced reactions at SPS energies.

Abreu, M.C. ; Astruc, J. ; Baglin, C. ; et al.
Phys.Lett.B 466 (1999) 408-414, 1999.
Inspire Record 507044 DOI 10.17182/hepdata.42673

The production of the J/ ψ and ψ ′ charmonia states has been studied, through their dimuon decay, in proton, Oxygen and Sulphur induced reactions, by the NA38 experiment at the CERN SPS. The proton data was collected with beams of 200 and 450 GeV, while the ion beams had an energy of 200 GeV per incident nucleon. The J/ ψ production cross-section per nucleon-nucleon collision exhibits a remarkably continuous pattern, as a function of the product of the mass numbers of the interacting nuclei, from pp up to S-U reactions. The same pattern is observed within S-U collisions, as a function of the collision centrality. While in p-A interactions both charmonia states exhibit the same A-dependence, in S-U collisions the ψ ′ production is very strongly suppressed.

6 data tables

Results of fitting the 200 and 450 GeV J/PSI data separately with a power law parametrization SIG=SIG0*(A*B)**POWER, where A and B are the beam and targetmass numbers. The value obtained from a combined fit is also given, as well as the ratio between the values of SIG0 for the 200 and 450 GeV data sets.

The J/PSI cross sections per nucleon (times the BR to di-muons) rescaled to 200 GeV/nucleon, using the SIG0 ratio detemined in the previous table, and to the cm rapidity window 0 to 1. The errors are combined statistical and systematic.

The ratio between the PSI(3685) and the J/PSI production cross section, times their BR into di-muons, at an incident beam energy of 450 GeV per nucleon. The errors are combined statistical and systematic.

More…

Charmonia production in 450-GeV/c proton induced reactions.

The NA38 collaboration Abreu, M.C. ; Baglin, C. ; Baldit, A. ; et al.
Phys.Lett.B 444 (1998) 516-522, 1998.
Inspire Record 478387 DOI 10.17182/hepdata.49294

Absolute J/ ψ and ψ ′ production cross sections have been measured at the CERN SPS, with 450 GeV/ c protons incident on a set of C, Al, Cu and W targets. Complementing these values with the results obtained by experiment NA51, which used the same beam and detector with H and D targets, we establish a coherent picture of charmonia production in proton-induced reactions at SPS energies. In particular, we show that the scaling of the J/ ψ cross section with the mass number of the target, A, is well described as A α , with α ψ =0.919±0.015. The ratio between the J/ ψ and ψ ′ yields, in our kinematical window, is found to be independent of A, with α ψ ′ − α ψ =0.014±0.011.

5 data tables

The ratio of the production cross sections, in the di-muon channel. Note that there are wo set of CU and WT data with targets of different lengths. An average values is also given for these.

The J/PSI absolute cross sections, times the BR to di-muons.

The PSI(3685) absolute cross sections, times the BR to di-muons.

More…

Charm Meson Production in 600-GeV/c $\pi^-$ Emulsion Interactions

The Fermilab E653 collaboration Kodama, K. ; Ushida, N. ; Mokhtarani, A. ; et al.
Phys.Lett.B 284 (1992) 461-470, 1992.
Inspire Record 32383 DOI 10.17182/hepdata.29154

We present total and differential cross sections for charm mesons produced in 600 GeV/ c π - emulsion interactions. Fits to d 2 σ / dx F dp T 2 ∞ (1−| x F |) n exp (- bp T 2 ) for 676 electronically reconstructed D mesons with x F >0 give n =4.25±0.24 ( stat .)±0.23 ( syst .) and b =0.76±0.03±0.03 ( GeV / c ) -2 . The total inclusive D + and D 0 cross sections are σ ( π - N → D ± ; x F >0) = 8.66±0.46±1.96 μb nucleon and σ(π - N→D 0 D 0 ; x F >0)=22.05±1.37±4.82μb nucleonk, where a linear dependence on the mean atomic weight of the target is assumed. These results are compared to next-to-leading order QCD predictions.

2 data tables

Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail). The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

Linear A-dependence.


Charm Meson Production in 800-GeV/c Proton - Emulsion Interactions

The Fermilab E653 collaboration Kodama, K. ; Ushida, N. ; Mokhtarani, A. ; et al.
Phys.Lett.B 263 (1991) 573-578, 1991.
Inspire Record 30879 DOI 10.17182/hepdata.47110

We report results on D 0 and D + production in proton-emulsion interactions at s =38.7 GeV. A fit to the form (1−| x F |) n exp (−bp 2 T ) yields n=6.9 +1.9 −1.8 and b=0.84 +0.10 −0.08 (GeV/ c ) −2 . The total inclusive cross section, is assuming linear A dependence, is measured to be 38±3(stat.) ±13 (sys.) μ b for the D 0 and 38±9±14 μ b for the D + . A comparison of these results with previous measurements indicates that nuclear effects do not strongly influence charm production. The predictions of QCD are in good agreement with our data.

3 data tables

The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).

Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail).


{$J/\psi$} and muon-pair cross-sections in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon

Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 270 (1991) 105-110, 1991.
Inspire Record 328409 DOI 10.17182/hepdata.29301

Muon-pair production has been measured in pCu, pU, OCu, OU and SU collisions at 200 GeV per nucleon. The cross sections are compatible with the atomic number dependence ( A proj. A targ. ) α where α =0.91±0.04 for the J/ψ resonance and α =1.01±0.04 for muon pairs produced in the mass continuum between 1.7 and 2.7 GeV/ c 2 .

10 data tables

Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).

Cross sections fitted with SIG0*(A(P=1)*A(P=2))** ALPHA. ALPHA is coded here as POWER(N=A*A,YN=SIG).

No description provided.

More…

A Search for weakly interacting neutral particles in missing energy events in 450-GeV/c p N collisions

The HELIOS collaboration Åkesson, T. ; Almehed, S. ; Angelis, A.L. S. ; et al.
Z.Phys.C 52 (1991) 219-226, 1991.
Inspire Record 302922 DOI 10.17182/hepdata.15014

We have measured the inclusive cross-section as a function of missing energy, due to the production of neutrinos or new weakly interacting neutral particles in 450 GeV/c proton-nucleus collisions, using calorimetric measurements of visible event energy. Upper limits are placed on the production of new particles as a function of their energy. These upper limits are typically an order

9 data tables

Differential single diffraction cross section.

Differential single diffraction cross section.

Differential single diffraction cross section.

More…

RESULTS ON LAMBDA(c)+, D(s)+, D0 AND D+ PRODUCTION PROPERTIES IN 230-GeV/c pi- Cu INTERACTIONS FROM THE NA32 EXPERIMENT

The ACCMOR collaboration Barlag, S. ; Becker, H. ; Bohringer, T. ; et al.
CERN-EP/88-104, 1988.
Inspire Record 264995 DOI 10.17182/hepdata.12879

None

33 data tables

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).

More…