In a Quark-Gluon Plasma (QGP), the fundamental building blocks of matter, quarks and gluons, are under extreme conditions of temperature and density. A QGP could exist in the early stages of the Universe, and in various objects and events in the cosmos. The thermodynamic and hydrodynamic properties of the QGP are described by Quantum Chromodynamics (QCD) and can be studied in heavy-ion collisions. Despite being a key thermodynamic parameter, the QGP temperature is still poorly known. Thermal lepton pairs ($e^+e^-$ and $\mu^+\mu^-$) are ideal penetrating probes of the true temperature of the emitting source, since their invariant-mass spectra suffer neither from strong final-state interactions nor from blue-shift effects due to rapid expansion. Here we measure the QGP temperature using thermal $e^+e^-$ production at the Relativistic Heavy Ion Collider (RHIC). The average temperature from the low-mass region (in-medium $\rho^0$ vector-meson dominant) is $(1.99 \pm 0.24) \times 10^{12}$ K, consistent with the chemical freeze-out temperature from statistical models and the phase transition temperature from LQCD. The average temperature from the intermediate mass region (above the $\rho^0$ mass, QGP dominant) is significantly higher at $(3.40 \pm 0.55)\times 10^{12}$ K. This work provides essential experimental thermodynamic measurements to map out the QCD phase diagram and understand the properties of matter under extreme conditions.
A search for physics beyond the standard model (SM) in the final state with a hadron- ically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of- mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb−1. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W′ boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector bo- son and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper lim- its on the cross section of t-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the t-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.
The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.
A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.
Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.
A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton-proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$, at a center-of-mass energy $\sqrt{s} =$ 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in $^{40}$Ar+$^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$~\GeVc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are placed in between those found in inelastic $p$+$p$ and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical or dynamical models.
Strong interactions preserve an approximate isospin symmetry between up ($u$) and down ($d$) quarks, part of the more general flavor symmetry. In the case of $K$ meson production, if this isospin symmetry were exact, it would result in equal numbers of charged ($K^+$ and $K^-$) and neutral ($K^0$ and $\overline K^{\,0}$) mesons in the final state. Here, we report results on the relative abundance of charged over neutral $K$ meson production in argon and scandium nuclei collisions at a center-of-mass energy of 11.9 GeV per nucleon pair. We find that the production of $K^+$ and $K^-$ mesons at mid-rapidity is $(18.4\pm 6.1)\%$ higher than that of the neutral $K$ mesons. Although with large uncertainties, earlier data on nucleus-nucleus collisions in the collision center-of-mass energy range $2.6 < \sqrt{s_{NN}} < 200$~\GeV are consistent with the present result. Using well-established models for hadron production, we demonstrate that known isospin-symmetry breaking effects and the initial nuclei containing more neutrons than protons lead only to a small (few percent) deviation of the charged-to-neutral kaon ratio from unity at high energies. Thus, they cannot explain the measurements. The significance of the flavor-symmetry violation beyond the known effects is 4.7$\sigma$ when the compilation of world data with uncertainties quoted by the experiments is used. New systematic, high-precision measurements and theoretical efforts are needed to establish the origin of the observed large isospin-symmetry breaking.