We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.
The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).
The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).
The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).
The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.
Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.
Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.
Direct photon $p_T$ spectra in different centrality bins.
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to {\sc pythia} and {\sc mc@nlo} simulations. The resulting $b\bar{b}$-production cross section is $\sigma^{d{\rm Au}}_{b\bar{b}}=1.37{\pm}0.28({\rm stat}){\pm}0.46({\rm syst})$~mb, which is equivalent to a nucleon-nucleon cross section of $\sigma^{NN}_{bb}=3.4\pm0.8({\rm stat}){\pm}1.1({\rm syst})\ \mu$b.
$b\bar{b}$ cross section
The $p_{\rm T}$-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at mid-rapidity in proton-proton collisions at $\sqrt{s} = 2.76$ TeV in the transverse momentum range 0.5 < $p_{\rm T}$ < 12 GeV/$c$ with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.
Double-differential cross section for the production of electrons, i.e. (electron + positron)/2, from heavy-flavour hadron decays as a function of transverse momentum at mid-rapidity. The systematic uncertainties do not include an additional normalization uncertainty of 1.9%.
The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb-1 in the dielectron channel and 20.5 fb-1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z* bosons, Minimal Z' Models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes and a Minimal Walking Technicolor model with a composite Higgs boson.
Z' Product of acceptance and efficiency for the dielectron and dimuon selections as a function of the SSM Z' pole mass.
Observed and predicted dielectron invariant mass (m_ee) distribution in the search region. The bin width is constant in log(m_ee).
Observed and predicted dimuon invariant mass (m_mumu) distribution in the search region. The bin width is constant in log(m_mumu).
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1
Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1
Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.
Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/c.
Relative beauty contribution to the heavy-flavour electron yield obtained with the method based on the track impact parameter.
We report on the measurement of the inclusive $\Upsilon$(1S) production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV carried out at forward rapidity ($2.5
Inclusive Upsilon (1S) Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV, as a function of the average number of participating nucleons (<Npart>). Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.
Inclusive Upsilon (1S) Nuclear Modification Factor (Raa) measured in Lead-Lead collisions at sqrt(sNN) = 2.76 TeV in 2.5 < y < 4 and pt > 0 GeV, as a function of the rapidity. Data have been collected in 2011 and the integrated luminosity is ~ 70 inverse microbarn.
The elliptic flow coefficient ($v_{2}$) of identified particles in Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV was measured with the ALICE detector at the LHC. The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of $|\Delta\eta| > 0.9$ between the identified hadron under study and the reference particles. The $v_2$ is reported for $\pi^{\pm}$, $\mathrm{K}^{\pm}$, $\mathrm{K}^0_\mathrm{S}$, p+$\overline{\mathrm{p}}$, $\mathrm{\phi}$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\Xi^-$+$\overline{\Xi}^+$ and $\Omega^-$+$\overline{\Omega}^+$ in several collision centralities. In the low transverse momentum ($p_{\mathrm{T}}$) region, $p_{\mathrm{T}} < 2 $GeV/$c$, $v_2(p_\mathrm{T})$ exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for $\pi^{\pm}$ and $\mathrm{K}$ are described fairly well by hydrodynamical calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the $v_2(p_\mathrm{T})$ for p+$\overline{\mathrm{p}}$, $\mathrm{\phi}$, $\Lambda$+$\overline{\mathrm{\Lambda}}$ and $\Xi^-$+$\overline{\Xi}^+$. For transverse momentum values larger than about 3 GeV/$c$, particles tend to group according to their type, i.e. mesons and baryons. However, the experimental data at the LHC exhibit deviations from the number of constituent quark (NCQ) scaling at the level of $\pm$20$\%$ for $p_{\mathrm{T}} > 3 $GeV/$c$.
Charged pions v2 as a function of pT for centrality: 0-5%.
Charged pions v2 as a function of pT for centrality: 5-10%.
Charged pions v2 as a function of pT for centrality: 10-20%.
Production of $\Upsilon$ mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$ is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of $1.6 \mathrm{nb}^{-1}$. The $\Upsilon$ mesons of transverse momenta up to $15 \mathrm{GeV}/c$ are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is $1.5 < y < 4.0$ (forward region) and $-5.0 < y < -2.5$ (backward region). The forward-backward production ratio and the nuclear modification factor for $\Upsilon(1S)$ mesons are determined. The data are compatible with the predictions for a suppression of $\Upsilon(1S)$ production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt $J/\psi$ mesons.
The product of production cross-section and branching fraction for upsilon mesons in the backward and forward regions.
The product of production cross-section and branching fraction for UPSILON(1S) in the common rapidity range.
The production ratios of excited upsilon mesons in the backward and forward regions.