Date

Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 777 (2018) 151-162, 2018.
Inspire Record 1623558 DOI 10.17182/hepdata.79482

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow $v_2$ reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} =2.76$ TeV. The two-particle correlator $\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle$, calculated for different combinations of charges $\alpha$ and $\beta$, is almost independent of $v_2$ (for a given centrality), while the three-particle correlator $\langle \cos(\varphi_\alpha + \varphi_\beta - 2\Psi_2) \rangle$ scales almost linearly both with the event $v_2$ and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on $v_2$ points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10-50% centrality interval is found to be 26-33% at 95% confidence level.

1 data table match query

$\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{2}) \rangle$ (opposite charge pairs) with $|\Delta\eta| > 2.0$ as a function of centrality for shape selected events (90-100% $q_2$) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV.


Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adolfsson, Jonatan ; et al.
JHEP 09 (2017) 032, 2017.
Inspire Record 1610453 DOI 10.17182/hepdata.80521

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|\eta|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Pb-Pb and p-Pb collisions.

1 data table match query

$v_2\{2\}$ with $|\eta| > 0.8$ for centrality class 40-50\% in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.


Angular analysis of the $B^{+}\rightarrow K^{\ast+}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Ackernley, Thomas ; et al.
Phys.Rev.Lett. 126 (2021) 161802, 2021.
Inspire Record 1838196 DOI 10.17182/hepdata.105273

We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.

1 data table match query

Correlation matrix for the optimised observables FL and P1–P'8 from the maximum-likelihood fit in the interval 15.00 < q2 < 19.00 GeV2/c4


Transverse momentum dependence of meson suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 82 (2010) 011902, 2010.
Inspire Record 856259 DOI 10.17182/hepdata.106472

New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.

4 data tables match query

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 20% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.

More…

Measurement of D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ production in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}}= 5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 10 (2018) 174, 2018.
Inspire Record 1669819 DOI 10.17182/hepdata.88168

We report measurements of the production of prompt D$^0$, D$^+$, D$^{*+}$ and D$^+_{\rm s}$ mesons in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV, in the centrality classes 0-10%, 30-50% and 60-80%. The D-meson production yields are measured at mid-rapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm T}$). The $p_{\rm T}$ intervals covered in central collisions are: $1<p_{\rm T}<50$ Gev/$c$ for D$^0$, $2<p_{\rm T}<50$ GeV/$c$ for D$^+$, $3<p_{\rm T}<50$ GeV/$c$ for D$^{*+}$, and $4<p_{\rm T}<16$ GeV/$c$ for D$^+_{\rm s}$ mesons. The nuclear modification factors ($R_{\rm AA}$) for non-strange D mesons (D$^0$, D$^+$, D$^{*+}$) show minimum values of about 0.2 for $p_{\rm T}$ = 6-10 GeV/$c$ in the most central collisions and are compatible within uncertainties with those measured at $\sqrt{s_{\rm NN}}=2.76$ TeV. For D$^+_{\rm s}$ mesons, the values of $R_{\rm AA}$ are larger than those of non-strange D mesons, but compatible within uncertainties. In central collisions the average $R_{\rm AA}$ of non-strange D mesons is compatible with that of charged particles for $p_{\rm T} > 8$ GeV/$c$, while it is larger at lower $p_{\rm T}$. The nuclear modification factors for strange and non-strange D mesons are also compared to theoretical models with different implementations of in-medium energy loss.

1 data table match query

Ratio of D*+ to D0 meson yield in Pb-Pb collisions at sqrt{sNN}=5.02 TeV, 60-80% centrality, in |y| < 0.5 as a function of pT. Branching ratio of D*+->D0pi->Kpipi : 0.0393*0.677. Branching ratio of D0->Kpi : 0.0393.


Anisotropic flow of identified particles in Pb-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}=5.02$ TeV

The ALICE collaboration Acharya, S. ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 09 (2018) 006, 2018.
Inspire Record 1672822 DOI 10.17182/hepdata.84717

The elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, ${\rm p+\overline{p}}$, ${\Lambda+\overline{\Lambda}}$, ${\rm K}^{\rm 0}_{\rm S}$, and the $\phi$-meson are measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Results obtained with the scalar product method are reported for the rapidity range $\vert y \vert <$ 0.5 as a function of transverse momentum, $p_\text{T}$, at different collision centrality intervals between 0-70%, including ultra-central (0-1%) collisions for $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$. For $p_\text{T} < 3$ GeV$\kern-0.05em/\kern-0.02em c$, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta ($3<p_\text{T}<$~8-10 GeV$\kern-0.05em/\kern-0.02em c$), particles show an approximate grouping according to their type (i.e., mesons and baryons). The $\phi$-meson $v_2$, which tests both particle mass dependence and type scaling, follows ${\rm p+\overline{p}}$ $v_2$ at low $p_\text{T}$ and $\pi^{\pm}$ $v_2$ at intermediate $p_\text{T}$. The evolution of the shape of $v_{\rm n}(p_{\mathrm{T}})$ as a function of centrality and harmonic number $n$ is studied for the various particle species. Flow coefficients of $\pi^{\pm}$, ${\rm K}^{\pm}$, and ${\rm p+\overline{p}}$ for $p_\text{T}<3$ GeV$\kern-0.05em/\kern-0.02em c$ are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for $p_\text{T} < 2.5$ GeV$\kern-0.05em/\kern-0.02em c$, while MUSIC calculations reproduce the measurements for $p_\text{T} < 1$ GeV$\kern-0.05em/\kern-0.02em c$. A comparison to $v_{\rm n}$ coefficients measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is also provided.

1 data table match query

anisotropic flow as a function of transverse momentum for Pb-Pb collisions at sqNN = 5.02 TeV.


Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 979, 2020.
Inspire Record 1762354 DOI 10.17182/hepdata.95121

The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $\sqrt{s}$ = 5.02 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV with the ALICE detector at the LHC is reported. The D$^{\rm 0}$, D$^{\rm +}$, and D$^{\rm *+}$ mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval 3 < $p_{\rm T}$ < 24 GeV/c and correlated with charged particles having $p_{\rm T}$ > 0.3 GeV/c and pseudorapidity $|\eta| <$ 0.8. The properties of the correlation peaks appearing in the near- and away-side regions (for $\Delta \varphi \approx$ 0 and $\Delta \varphi \approx \pi$, respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p-Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators.

1 data table match query

Comparison of the near-side associated peak width measured in pp collisions at $\sqrt{s} = 5.02$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, for correlations of D mesons (average of D$^{0}$, D$^{+}$, D$^{*+}$) and charged particles, as a function of the D-meson $p_{\rm T}$, for associated particle $0.3 < p_{\rm T} < 1.0$. Rapidity range for the D mesons are $|y^{\rm D}_{\rm cms}| < 0.5$ in pp, $-0.96 < y^{\rm D}_{\rm cms} < 0.04$ in p-Pb. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D}| < 1$.


Multiplicity dependence of K*(892)$^{0}$ and $\phi$(1020) production in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 807 (2020) 135501, 2020.
Inspire Record 1762348 DOI 10.17182/hepdata.96957

Measurements of identified hadrons as a function of the charged-particle multiplicity in pp collisions enable a search for the onset of collective effects in small collision systems. With such measurements, it is possible to study the mechanisms that determine the shapes of hadron transverse momentum ($p_{\rm{T}}$) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in the hadron-gas phase, and to investigate different explanations for the multiplicity evolution of strangeness production provided by phenomenological models. In this paper, these topics are addressed through measurements of the $\rm{K}^{*}(892)^{0}$ and $\phi(1020)$ mesons at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV as a function of the charged-particle multiplicity. The results include the $p_{\rm{T}}$ spectra, $p_{\rm{T}}$-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed.

1 data table match query

$\phi$ transverse momentum spectrum - V0M multiplicity class IV


Multiplicity dependence of $\pi$, K, and p production in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 693, 2020.
Inspire Record 1784041 DOI 10.17182/hepdata.96821

This paper presents the measurements of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{p}$ and $\bar{\rm{p}}$ transverse momentum ($p_{\rm{T}}$) spectra as a function of charged-particle multiplicity density in proton-proton (pp) collisions at $\sqrt{s}$ = 13 TeV with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy dependence of light-flavour particle production. The measurements reported here cover a $p_{\rm{T}}$ range from 0.1 GeV/$c$ to 20 GeV/$c$ and are done in the rapidity interval $|y|<0.5$. The $p_{\rm{T}}$-differential particle ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at $\sqrt{s}$ = 7 TeV, which is qualitatively described by some of the hydrodynamical and pQCD-inspired models discussed in this paper. Furthermore, the $p_{\rm{T}}$-integrated hadron-to-pion yield ratios measured in pp collisions at two different center-of-mass energies are consistent when compared at similar multiplicities. This also extends to strange and multistrange hadrons, suggesting that, at LHC energies, particle hadrochemistry scales with particle multiplicity the same way under different collision energies and colliding systems.

1 data table match query

Transverse momentum spectra ratios ($K^{+} + K^{-}$)/($\pi^{+} + \pi^{-}$) in V0M multiplicity classes


Production of $\omega$ mesons in pp collisions at $\sqrt{s}$ = 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 1130, 2020.
Inspire Record 1805263 DOI 10.17182/hepdata.99031

The invariant differential cross section of inclusive $\omega(782)$ meson production at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 7 TeV was measured with the ALICE detector at the LHC over a transverse momentum range of 2 < $p_{\rm{T}}$ < 17 GeV/$c$. The $\omega$ meson was reconstructed via its $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The measured $\omega$ production cross section is compared to various calculations: PYTHIA 8.2 Monash 2013 describes the data, while PYTHIA 8.2 Tune 4C overestimates the data by about 50%. A recent NLO calculation, which includes a model describing the fragmentation of the whole vector-meson nonet, describes the data within uncertainties below 6 GeV/$c$, while it overestimates the data by up to 50% for higher $p_{\rm{T}}$. The $\omega/\pi^0$ ratio is in agreement with previous measurements at lower collision energies and the PYTHIA calculations. In addition, the measurement is compatible with transverse mass scaling within the measured $p_{\rm{T}}$ range and the ratio is constant with $C^{\omega/\pi^{0}}$ = 0.67 $\pm$ 0.03 (stat) $\pm$ 0.04 (sys) above a transverse momentum of 2.5 GeV/$c$.

2 data tables match query

Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 7 TeV, the uncertainty of sigma_{MB} of 3.5% is not included in the systematic error.

The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 7 TeV.