Date

Probing Parton Dynamics of QCD Matter with $\Omega$ and $\phi$ Production

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 021903, 2016.
Inspire Record 1378002 DOI 10.17182/hepdata.72068

We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.

85 data tables

Phi Meson Spectra.

Phi Meson Spectra.

Phi Meson Spectra.

More…

Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 750 (2015) 64-71, 2015.
Inspire Record 1340691 DOI 10.17182/hepdata.72236

The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.

6 data tables

Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.

More…

Study of Z production in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV in the dimuon and dielectron decay channels

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 03 (2015) 022, 2015.
Inspire Record 1322726 DOI 10.17182/hepdata.66612

The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at sqrt(s[NN]) = 2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 150 inverse microbarns, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 inverse picobarns. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 +/- 0.05 (stat) +/- 0.08 (syst) in the dimuon channel and 1.02 +/- 0.08 (stat) +/- 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.

15 data tables

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dimuon decay channel in |y|<2.0.

The measured Z boson production cross section in pp collisions as a function of the Z boson pT for the dielectron decay channel in |y|<1.44.

The measured Z boson production cross section in pp collisions as a function of the Z boson rapidity for the dimuon decay channel.

More…

Study of $J/\psi$ production and cold nuclear matter effects in $p$Pb collisions

The LHCb collaboration Aaij, R ; Adeva, B ; Adinolfi, M ; et al.
JHEP 02 (2014) 072, 2014.
Inspire Record 1251899 DOI 10.17182/hepdata.64876

The production of $J/\psi$ mesons with rapidity $1.5<y<4.0$ or $-5.0<y<-2.5$ and transverse momentum $p_\mathrm{T}<14 \mathrm{GeV}/c$ is studied with the LHCb detector in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{NN}}=5 \mathrm{TeV}$. The analysis is based on a data sample corresponding to an integrated luminosity of about $1.6 \mathrm{nb}^{-1}$. For the first time the nuclear modification factor and forward-backward production ratio are determined separately for prompt $J/\psi$ mesons and $J/\psi$ from $b$-hadron decays. Clear suppression of prompt $J/\psi$ production with respect to proton-proton collisions at large rapidity is observed, while the production of $J/\psi$ from $b$-hadron decays is less suppressed. These results show good agreement with available theoretical predictions. The measurement shows that cold nuclear matter effects are important for interpretations of the related quark-gluon plasma signatures in heavy-ion collisions.

9 data tables

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of transverse momentum in the BACKWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

Single differential production cross sections of prompt J/PSI mesons and of J/PSI from B decay as a function of rapidity in the FORWARD region. The errors shown are statistical and the uncorrelated and correlated components of the systematic uncertainties.

More…

Study of the production of charged pions, kaons, and protons in pPb collisions at sqrt(sNN) = 5.02 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 74 (2014) 2847, 2014.
Inspire Record 1242440 DOI 10.17182/hepdata.63972

Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at sqrt(sNN) = 5.02 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and laboratory rapidity abs(y) < 1 are identified via their energy loss in the silicon tracker. The average pt increases with particle mass and the charged multiplicity of the event. The increase of the average pt with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that EPOS LHC, which incorporates additional hydrodynamic evolution of the created system, is able to reproduce most of the data features, unlike HIJING and AMPT. The pt spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.

46 data tables
More…

Light vector meson production in pp collisions at sqrt(s) = 7 TeV

The ALICE collaboration Abelev, B. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Lett.B 710 (2012) 557-568, 2012.
Inspire Record 1080945 DOI 10.17182/hepdata.58629

The ALICE experiment has measured low-mass dimuon production in pp collisions at $\sqrt{s} = 7$ TeV in the dimuon rapidity region 2.5<y<4. The observed dimuon mass spectrum is described as a superposition of resonance decays ($\eta$, $\rho$, $\omega$, $\eta^{'}$, $\phi$) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for $\omega$ and $\phi$ are $\sigma_\omega$ (1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4) = 5.28 $\pm$ 0.54 (stat) $\pm$ 0.50 (syst) mb and $\sigma_\phi$(1<$p_{\rm T}$<5 GeV/$c$,2.5<y<4)=0.940 $\pm$ 0.084 (stat) $\pm$ 0.078 (syst) mb. The differential cross sections $d^2\sigma/dy dp_{\rm T}$ are extracted as a function of $p_{\rm T}$ for $\omega$ and $\phi$. The ratio between the $\rho$ and $\omega$ cross section is obtained. Results for the $\phi$ are compared with other measurements at the same energy and with predictions by models.

5 data tables

Differential phi cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Differential omega cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.

Total phi cross section from the di-muon data. The first error is statistical, the second is a systematic error.

More…

Observation of the antimatter helium-4 nucleus

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nature 473 (2011) 353, 2011.
Inspire Record 893021 DOI 10.17182/hepdata.58495

High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.

1 data table

Differential invariant yields of (anti)baryons evaluated at pT/B =0.875 GeV/c, in central 200 GeV Au+Au collisions.


Study of Z boson production in PbPb collisions at nucleon-nucleon centre of mass energy = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 106 (2011) 212301, 2011.
Inspire Record 890909 DOI 10.17182/hepdata.57943

A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.

4 data tables

The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.

The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.

The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.

More…

J/psi production at high transverse momentum in p+p and Cu+Cu collisions at \sNN=200GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 041902, 2009.
Inspire Record 817120 DOI 10.17182/hepdata.55733

The STAR collaboration at RHIC presents measurements of \Jpsi$\to{e^+e^-}$ at mid-rapidity and high transverse momentum ($p_T>5$ GeV/$c$) in \pp and central \cucu collisions at \sNN = 200 GeV. The inclusive \Jpsi production cross section for \cucu collisions is found to be consistent at high $p_T$ with the binary collision-scaled cross section for \pp collisions, in contrast to previous measurements at lower $p_T$, where a suppression of \Jpsi production is observed relative to the expectation from binary scaling. Azimuthal correlations of $J/\psi$ with charged hadrons in \pp collisions provide an estimate of the contribution of $B$-meson decays to \Jpsi production of $13% \pm 5%$.

8 data tables

J/psi differential production cross section in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

J/psi transverse momentum distribution in sqrt(s).

More…

Energy dependence of phi meson production in central Pb+Pb collisions at $\sqrt{s}_{NN}$ = 6 to 17 GeV

The NA49 collaboration Alt, C. ; Anticic, T. ; Baatar, B. ; et al.
Phys.Rev.C 78 (2008) 044907, 2008.
Inspire Record 787913 DOI 10.17182/hepdata.25063

Phi meson production is studied by the NA49 collaboration in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV beam energy. The data are compared to measurements at lower and higher energies and to microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

20 data tables

PHI transverse momentum spectra at incident energy 20 GeV/nucleon integrated over the rapidity range 0 to 1.8.

PHI transverse momentum spectra at incident energy 30 GeV/nucleon integrated over the rapidity range 0 to 1.8.

PHI transverse momentum spectra at incident energy 40 GeV/nucleon integrated over the rapidity range 0 to 1.5.

More…