Jet Production and Fragmentation in e+ e- Annihilation at 12-GeV to 43-GeV

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 307-340, 1984.
Inspire Record 195333 DOI 10.17182/hepdata.16272

We present the general properties of jets produced bye+e− annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee+e− annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofxp=2p/W are presented; scale breaking is observed at the level of 25%. The quantityxpdδ/dxp is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e+e−→Q\(\bar Q\) for quark masses up to 5<mQ<20.3 GeV (|eQ|=2/3) and 7<mQ<19 GeV (|eQ|=1/3). The comparison of 1/σtotdδ/dpT measured at 14, 22 and 34 GeV suggests that hard gluon bremsstrahlung contributes mainly to transverse momenta larger than 0.5 GeV/c. The rapidity distribution forW≧22 GeV shows an enhancement away fromy=0 which corresponds to an increase in yield of 10–15% compared to the centre region (y=0). The enhancement probably results from heavy quark production and gluon bremsstrahlung. The particle flux around the jet axis shows with increasing c.m. energy a rapidly growing number of particles collimated around the jet axis, while at large angles to the jet axis almost noW dependence is observed. For fixed longitudinal momentump‖ approximate “fan invariance” is seen: The shape of the angular distribution around the jet axis is almost independent ofW. The collimation depends strongly onp‖. For smallp‖,p‖<0.2 GeV/c, isotropy is observed. With increasingp‖ the particles tend to be emitted closer and closer to the jet axis.

14 data tables

R VALUES BELOW 32.5 GEV ARE IDENTICAL TO THOSE GIVEN IN BRANDELIK ET AL., PL 113B, 499 (1982).

No description provided.

CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS.

More…

Charged Multiplicity Distribution in p p Interactions at ISR Energies

The Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw collaboration Breakstone, A. ; Campanini, R. ; Crawley, H.B. ; et al.
Phys.Rev.D 30 (1984) 528, 1984.
Inspire Record 196601 DOI 10.17182/hepdata.23637

The multiplicities of charged secondaries in proton-proton collisions were determined using the split-field-magnet detector at the CERN Intersecting Storage Rings (ISR). Measurements are presented on multiplicity distributions both for inelastic and non-single-diffractive events at four different energies s=30.4, 44.5, 52.6, and 62.2 GeV. The results reported here represent the first high-statistics measurement of charged multiplicity distributions at ISR energies with a magnetic detector covering nearly the full solid angle.

4 data tables

INELASTIC EVENTS.

NON-SINGLE-DIFFRACTIVE EVENTS.

Moments of the multiplicity distributions for Inelastic events.

More…

Charged Particle and Neutral Kaon Production in e+ e- Annihilation at PETRA

The JADE collaboration Bartel, W. ; Becker, L. ; Bawbery, C. ; et al.
Z.Phys.C 20 (1983) 187, 1983.
Inspire Record 190818 DOI 10.17182/hepdata.16288

None

5 data tables

MEAN CHARGED MULTIPLICITY.

MEAN CHARGED MULTIPLICITY AFTER SUBTRACTING SECONDARIES FROM KS AND LAMBDA DECAY, PLUS LEPTONS FROM HEAVY QUARK WEAK DECAYS ARE FROM DALITZ DECAYS. I.E. NUMBER OF CHARGED HADRONS HAVING LIFETIME > 10**-9 SEC.

INVERSE RELATIVE DISPERSION.

More…

Multiplicity Distributions in $p \alpha$ and $\alpha \alpha$ Collisions in the {CERN} {ISR}

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 119 (1982) 464, 1982.
Inspire Record 179518 DOI 10.17182/hepdata.6665

Measurements of charged particle multiplicity distributions in the central rapidity region in p-p and p-α, and α-α collisions are reported. They are better fitted to the “wounded nucleon” than to the “gluon string” model. The average transverse momenta, for all three reactions, are identical (and almost independent of multiplicity) up to very high multiplicities.

2 data tables

THE FIRST PP DATA IS AT 44 GEV, THE SECOND AT 63 GEV.

No description provided.


A Detailed Study of Average Charged Particle Multiplicity Versus Available Energy and Invariant Mass at Different $\sqrt{s}$ in $p p$ Interactions

Basile, M. ; Bonvicini, G. ; Cara Romeo, G. ; et al.
Nuovo Cim.A 67 (1982) 244, 1982.
Inspire Record 168751 DOI 10.17182/hepdata.37531

By using (pp) interactions at three different c.m. energies,\(\left( {\sqrt 8 } \right)_{pp} \)=30, 44, 62 GeV, it is shown that the average charged-particle multiplicity <nch>vs. the invariant mass of the hadronic systemm1,2 has the same behaviour as it hasvs. 2Ehad. Moreover, in both cases <nch> is shown to be nearly independent of\(\left( {\sqrt 8 } \right)_{pp} \) and in good agreement with the average charged-particle multiplicity measured in the (e+e−) annihilation.

10 data tables

WITH SQRT(S) OF 30 GEV.

WITH SQRT(S) OF 44 GEV.

WITH SQRT(S) OF 62 GEV.

More…

Charged Particle Multiplicities in ($p p$) Interactions and Comparison With ($e^+ e^-$) Data

Basile, M. ; Cara Romeo, G. ; Cifarelli, L. ; et al.
Nuovo Cim.A 65 (1981) 400, 1981.
Inspire Record 166765 DOI 10.17182/hepdata.37470

By using three different c.m. energies in pp interactions,\(\sqrt s \), 44, 62 GeV, it is shown that the average charged-particle multiplicity <nch> sclaes with\(\sqrt s \) once the correct hadronic energy available for multiparticle production,Ehad, is used as basic parameter. The pp data, analysed in this way, are compared with e+e− data at equivalent energies. The agreement is very satisfactory.

6 data tables

WITH SQRT(S) OF 30 GEV.

WITH SQRT(S) OF 44 GEV.

WITH SQRT(S) OF 62 GEV.

More…

The Energy Dependence of Charged Particle Multiplicity in $p p$ Interactions

Basile, M. ; Cara Romeo, G. ; Cifarelli, L. ; et al.
Phys.Lett.B 95 (1980) 311-312, 1980.
Inspire Record 153920 DOI 10.17182/hepdata.27162

The average charged multiplicity in proton-proton interactions has been studied at √ s = 62 GeV. A very good agreement with the average charged multiplicity measured in e + e − annihilation at different energies is obtained by redefining, in p-p, the correct energies available for particle production. This means that a p-p collision at √ s = 62 GeV does in fact correspond to a large range of effective hadronic energies available for particle production.

1 data table

AVERAGE CHARGED MULTIPLICITY AS A FUNCTION OF HADRONIC ENERGY WHERE E(NAME=HAD) IS THE INCIDENT PROTON ENERGY (COLLIDING BEAM ENERGY) MINUS THE LEADING PROTON ENERGY.