Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

16 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

More…

$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

J/$\psi$ production as a function of charged-particle multiplicity in p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}~=~8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 162, 2020.
Inspire Record 1792996 DOI 10.17182/hepdata.97018

Inclusive J/$\psi$ yields and average transverse momenta in p-Pb collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 8.16 TeV are measured as a function of the charged-particle pseudorapidity density with ALICE. The J/$\psi$ mesons are reconstructed at forward $(2.03 < y_{\rm cms} < 3.53)$ and backward ($-4.46 < y_{\rm cms} < -2.96$) center-of-mass rapidity in their dimuon decay channel while the charged-particle pseudorapidity density is measured around midrapidity. The J/$\psi$ yields at forward and backward rapidity normalized to their respective average values increase with the normalized charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The normalized average transverse momenta at forward and backward rapidity manifest a steady increase from low to high charged-particle pseudorapidity density with a saturation beyond the average value.

6 data tables

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi as a function of relative charged-particle pseudorapidity density at backward rapidity -4.46 < y_cms < -2.96 (Pb-going direction).

Mean transverse momentum of inclusive J/psi as a function of the relative charged-particle pseudorapidity density at forward rapidity 2.03 < y_cms < 3.53 (p-going direction).

More…

Production of (anti-)$^3$He and (anti-)$^3$H in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 044906, 2020.
Inspire Record 1762356 DOI 10.17182/hepdata.94416

The transverse momentum ($p_{\rm{T}}$) differential yields of (anti-)$^3$He and (anti-)$^3$H measured in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV with ALICE at the Large Hadron Collider (LHC) are presented. The ratios of the $p_{\rm{T}}$-integrated yields of (anti-)$^3$He and (anti-)$^3$H to the proton yields are reported, as well as the $p_{\rm{T}}$ dependence of the coalescence parameters $B_3$ for (anti-)$^3$He and (anti-)$^3$H. For (anti-)$^3$He, the results obtained in four classes of the mean charged-particle multiplicity density are also discussed. These results are compared to predictions from a canonical statistical hadronization model and coalescence approaches. An upper limit on the total yield of $^4\bar{\mathrm{He}}$ is determined.

24 data tables

Transverse momentum spectra of (anti-)$^3\mathrm{He}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

Transverse momentum spectra of (anti-)$^3\mathrm{H}$ measured in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

$^3\overline{\mathrm{He}} /\,^3\mathrm{He}$ ratio in $\mathrm{INEL}>0$ p--Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$

More…

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Version 2
$\pi^0$ and $\eta$ meson production in proton-proton collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 263, 2018.
Inspire Record 1620477 DOI 10.17182/hepdata.79044

An invariant differential cross section measurement of inclusive $\pi^{0}$ and $\eta$ meson production at mid-rapidity in pp collisions at $\sqrt{s}=8$ TeV was carried out by the ALICE experiment at the LHC. The spectra of $\pi^{0}$ and $\eta$ mesons were measured in transverse momentum ranges of $0.3<p_{\rm T}<35$ GeV/$c$ and $0.5<p_{\rm T}<35$ GeV/$c$, respectively. Next-to-leading order perturbative QCD calculations using fragmentation functions DSS14 for the $\pi^{0}$ and AESSS for the $\eta$ overestimate the cross sections of both neutral mesons, although such calculations agree with the measured $\eta/\pi^{0}$ ratio within uncertainties. The results were also compared with PYTHIA~8.2 predictions for which the Monash~2013 tune yields the best agreement with the measured neutral meson spectra. The measurements confirm a universal behavior of the $\eta/\pi^{0}$ ratio seen for NA27, PHENIX and ALICE data for pp collisions from $\sqrt{s}=27.5$ GeV to $\sqrt{s}=8$ TeV within experimental uncertainties. A relation between the $\pi^{0}$ and $\eta$ production cross sections for pp collisions at $\sqrt{s}=8$ TeV is given by $m_{\rm T}$ scaling for $p_{\rm T}>3.5$ GeV/$c$. However, a deviation from this empirical scaling rule is observed for transverse momenta below $p_{\rm T}<3.5$ GeV/$c$ in the $\eta/\pi^0$ ratio with a significance of $6.2\sigma$.

16 data tables

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\pi^0$ produced in inelastic pp collisions at center of mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of $\eta$ produced in inelastic pp collisions at center-of-mass energy 8 TeV, the uncertainty of $\sigma_{MB}$ of 2.6% is not included in the systematic error.

More…

Version 2
Measurement of charged pion, kaon, and proton production in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 112003, 2017.
Inspire Record 1608166 DOI 10.17182/hepdata.80168

Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at sqrt(s) = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pt ~ 0.1-1.7 GeV and rapidities abs(y) < 1. The pt spectra and integrated yields are compared to previous results at smaller sqrt(s) and to predictions of Monte Carlo event generators. The average pt increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at sqrt(s) = 0.9, 2.76, and 7 TeV show that the average pt and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision.

89 data tables

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.

Measured transverse momentum distributions of identified charged hadrons (PI+, K+ and P) at a centre-of-mass energy of 13 TeV.

Measured transverse momentum distributions of identified charged hadrons (PI-, K- and PBAR) at a centre-of-mass energy of 13 TeV.

More…

J/$\psi$ production as a function of charged-particle pseudorapidity density in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Adamová, D. ; Aggarwal, Madan Mohan ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 776 (2018) 91-104, 2018.
Inspire Record 1589286 DOI 10.17182/hepdata.80256

We report measurements of the inclusive J/$\psi$ yield and average transverse momentum as a function of charged-particle pseudorapidity density ${\rm d}N_{\rm ch}/{\rm d}\eta$ in p-Pb collisions at $\sqrt{s_{\rm NN}}= 5.02$ TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/$\psi$ yield with normalised ${\rm d}N_{\rm ch}/{\rm d}\eta$, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/$\psi$ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

6 data tables

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for forward rapidities 2.03 < y_cms < 3.53 (p-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for backward rapidities -4.46 < y_cms < -2.96 (Pb-going direction).

Relative yield of inclusive J/psi mesons as a function of relative charged-particle pseudorapidity density for central rapidities -1.37 < y_cms < 0.43.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 772 (2017) 567-577, 2017.
Inspire Record 1507090 DOI 10.17182/hepdata.78365

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations --- none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

5 data tables

Charged-particle pseudorapidity density for ten centrality classes over a broad $\eta$ range in Pb-Pb collisions at $\sqrt{s_{_{\mathrm{NN}}}}=5.02\,\mathrm{TeV}$. Boxes around the points reflect the total uncorrelated systematic uncertainties, while the filled squares on the right reflect the correlated systematic uncertainty (evaluated at $\eta=0$). Statistical errors are generally insignificant and smaller than the markers. Also shown is the reflection of the $3.5<\eta<5$ values around $\eta=0$ (open circles). The line corresponds to fits of the difference between two Gaussians centred at $\eta=0$ ($f_{\text{GG}}$) [PLB754.373] to the data.

Charged-particle pseudorapidity density at midrapidity in most perihperhal (80-90%) Pb-Pb collisions at $\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5.02\,\mathrm{TeV}$.

Total number of charged particles as a function of the mean number of participating nucleons [PRC88.044909]. The total charged-particle multiplicity is given as the integral over $\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ over the measured region ($-3.5<\eta<5$) and extrapolations from fitted functions in the unmeasured regions. The contribution from unmeasured $\eta$ regions amounts to $\approx30\%$ of the total number of charged particles. The uncertainty on the extrapolation to the unmeasured pseudorapidity region is smaller than the size of the markers. The contribution to the systematic uncertainties from the centrality determination and electromagnetic processes are vanishing compared to the contribution from the largest differences between the fitted functions. A function inspired by factorisation [PRC83.024913] is fitted to the data, and the best fit yields $a=51.5\pm7.3$, $b=0.16\pm0.05$.

More…

Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Nature Phys. 13 (2017) 535-539, 2017.
Inspire Record 1471838 DOI 10.17182/hepdata.77284

At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the Quark-Gluon Plasma (QGP) [1]. Such an extreme state of strongly-interacting QCD (Quantum Chromo-Dynamics) matter is produced in the laboratory with high-energy collisions of heavy nuclei, where an enhanced production of strange hadrons is observed [2-6]. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions [7], is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions [8,9]. Yet, enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity pp collisions. We find that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with p-Pb collision results [10,11] indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

52 data tables

$K^{0}_{S}$ transverse momentum spectrum: V0M Class I (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class II (pp at $\sqrt{s}=7$ TeV).

$K^{0}_{S}$ transverse momentum spectrum: V0M Class III (pp at $\sqrt{s}=7$ TeV).

More…