Inclusive coherent proton diffraction dissociation on helium has been measured in the four-momentum transfer and missing-mass region 0.04<|t|<0.40 (GeV/c)2, MX2<10 GeV2 and for incident proton beam momenta from 46 to 400 GeV/c. We find that the differential cross section d2σdtdMX2 varies slowly with energy, reveals a pronounced peak at MX2≃2 GeV2, and at large masses behaves approximately as 1MX2. The cross section falls exponentially as |t| increases, with a large slope parameter at small momentum transfers and a substantially smaller one at large |t| values, with no clear dip between the two regions as seen in elastic scattering. We compare the experimental t distributions to Glauber-model predictions and find the data provide a sensitive test of the assumptions on the details of the elementary proton diffraction-dissociation amplitudes and on the total cross sections of the diffractively produced states.
No description provided.
No description provided.
AVERAGED DATA FOR 200 AND 259 GEV.
None
No description provided.
No description provided.
PRESENTED IN PREPRINT ON FIG 3.
3 H̃e nuclei were observed in the negative beam, produced by 70 GeV protons on an Al target. Five 3 H̃e have been identified among 2.4 · 10 11 particles that passed through the apparatus. Scintillation and Čerenkov counters were used to measure the electrical charge and velocity of particles. The mass of 3 H̃e is found to be M 3 H ̃ e = (1.00 ± 0.03)3m p , the charge is z = (0.99 ± 0.03)2 e . The ratio of differential production cross sections of 3 H ̃ e (P = 20 GeV /c) and π − (P = 10 GeV/c ) equals 2 · 10 −11 . This corresponds to antihelium −3 production cross section d 2 σ 3 H ̃ e / d Ω d P = 2.0 · 10 −35 cm 2 / sr · GeV /c per Al nuclei and 2.2 · 10 −36 cm 2 sr · GeV/ c per nucleon.
No description provided.
No description provided.