We confirm the existence of the two I G ( J PC ) = 0 + (0 ++ ) resonances f 0 (1370) and f 0 (1500) reported by us in earlier analyses. The analysis presented here couples the final states π 0 π 0 π 0 , π 0 π 0 η and π 0 ηη of p p annihilation at rest. It is based on a 3 × 3 K -matrix. We find masses and widths of M = (1390±30) MeV, Γ = (380±80) MeV; and M = (1500±10) MeV, Γ = (154 ± 30) MeV, respectively. The product branching ratios for the production and decay into π 0 π 0 and ηη of the f 0 (1500) are (1.27 ± 0.33) · 10 −3 and (0.60 ± 0.17) · 10 −3 , respectively.
No description provided.
The annihilation p p → Φγ has been investigated with the Crystal Barrel detector at LEAR for antiprotons stopped in liquid hydrogen. The observed branching ratio BR ( p p → Φγ = (1.7 ± 0.4) · 10 −5 is almost two orders of magnitude higher than expected from the OZI-rule. As a by-product, the branching ratios BR ( p p → K L K S ) = (9.0 ± 0.6) · 10 −4 and BR ( p p → Φπ 0 ) = (5.5 ± 0.7) · 10 −4 have been measured.
No description provided.
Strange and multistrange baryon and antibaryon production is a useful probe into the dynamics of the hot hadronic matter created in central heavy ion interactions. Relative production yields and transverse mass spectra are presented for Λ, Λ , Ξ − and Ξ + hyperons produced in central sulphur-tungsten interactions at 200 GeV/ c per nucleon.
Distributions are fitted with (1/MT**1.5)*DN/DMT=CONST*EXP(-MT/SLOPE).
No description provided.
No description provided.
The depolarization parameter Donon of the p dash p → n dash n charge exchange reaction has been measured for the first time at the CERN Low Energy Antiproton Ring (LEAR) at two antiproton momenta, 546 and 875 MeV/ c . The transverse polarization of the recoil neutron was analyzed using a large-acceptance neutron polarimeter made up of two parallel plastic scintillator planes. D 0 n 0 n is usually less than 0.35 which suggests that the spin-spin amplitudes dominate in the scattering matrix. Results are compared with the predictions of various N dash N potential models. The agreement is in general satisfactory.
No description provided.
No description provided.
The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The differential cross section of the charge-exchange reaction p p → n n has been measured at the CERN Low Energy Antiproton Ring (LEAR) at seven p momenta in the range 546–1287 MeV/ c . A pentanol polarized target has been used and the neutron and the antineutron have been detected in coincidence. The data cover most of the angular range.
No description provided.
No description provided.
No description provided.
The first measurement of incoherent η-photoproduction from the deuteron in the threshold region is reported. The experiment was carried out at the MAMI accelerator with the TAPS spectrometer. Total and differential inclusive cross sections have been obtained between 627 and 790 MeV. It is found that the reaction is completely dominated by the incoherent part. An upper limit for coherent η-photoproduction on the deuteron is deduced, which is substantially lower than the result from an earlier measurement. The incoherent cross section is reproduced in a participant-spectator approach under the assumption of an energy-independent ratio between the neutron and proton cross sections. Best agreement is found for the ratio σ n σ p ≈ 2 3 . The implications for the isospin components of the electromagnetic excitation of the S 11 (1535) resonance are discussed.
The helicity amplitudes A(1/2) = <S11|j(em)|nucleon> are measured.
We have observed the ηπ + π − and ηπ 0 π 0 decay modes of the E meson in p p annihilation at rest into π + π − π 0 π 0 η . The mass and width of the E meson are 1409 ± 3 and 86 ± 10 MeV. The production and decay branching ratio is B( p p → Eππ)B(E → ηππ) = (3.3 ± 1.0) × 10 −3 . With a spin-parity analysis we determine that J P = 0 − . The observation of the ηπ 0 π 0 decay mode establishes that E is isoscalar ( C = +1). We find that E decays to η ( ππ ) s (where ( ππ ) s is an S-wave dipion) and πa 0 (980)(→ πη ) with a relative branching ratio of (78 ± 16) %. Using the K K π production and decay branching ratio measured earlier we determine that B[E → K K π] B[E → ηππ] = 0.61 ± 0.19 . A comparison with observations in radiative J Ψ decays suggests that E and ι η (1416) are identical.
Unobserved channels (E --> ETA 2PI0)2PI0 and (E --> ETA PI+ PI-)PI+PI- was taken into account.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
The ratio of neutron and proton yields at quasifree kinematics was measured for the reactions 2H(e,e′n) and 2H(e,e′p) at momentum transfers Q2=0.125, 0.255, 0.417, and 0.605(GeV/c)2, detecting the neutron and the proton simultaneously in the same scintillator array. The neutron detection efficiency was measured in situ with the 1H(γ,π+)n reaction. From this the ratio R of 2H(e,e′n) and 2H(e,e′p) cross sections was determined and used to extract the neutron magnetic form factor GMn in a model insensitive approach, resulting in an inaccuracy between 2.1% and 3.3% in GMn.
Formfactor in nuclear magnetons.