Quasi-free Compton Scattering and the Polarizabilities of the Neutron

Kossert, K. ; Camen, M. ; Wissmann, F. ; et al.
Eur.Phys.J.A 16 (2003) 259-273, 2003.
Inspire Record 599960 DOI 10.17182/hepdata.43752

Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.

1 data table match query

Energy dependence of the free-proton differential cross section.


Single pi+ electroproduction on the proton in the first and second resonance regions at 0.25-GeV**2 < Q**2 < 0.65-GeV**2 using CLAS.

The CLAS collaboration Egiyan, H. ; Aznauryan, I.G. ; Burkert, V.D. ; et al.
Phys.Rev.C 73 (2006) 025204, 2006.
Inspire Record 707883 DOI 10.17182/hepdata.6748

The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

75 data tables match query

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.

Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.

More…

Measurements of the Deuteron and Proton Magnetic Form-factors at Large Momentum Transfers

Bosted, Peter E. ; Katramatou, A.T. ; Arnold, R.G. ; et al.
Phys.Rev.C 42 (1990) 38-64, 1990.
Inspire Record 283632 DOI 10.17182/hepdata.26165

Measurements of the deuteron elastic magnetic structure function B(Q2) are reported at squared four-momentum transfer values 1.20≤Q2≤2.77 (GeV/c)2. Also reported are values for the proton magnetic form factor GMp(Q2) at 11 Q2 values between 0.49 and 1.75 (GeV/c)2. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180° were detected in coincidence with deuterons or protons recoiling near 0° in a large solid-angle double-arm spectrometer system. The data for B(Q2) are found to decrease rapidly from Q2=1.2 to 2 (GeV/c)2, and then rise to a secondary maximum around Q2=2.5 (GeV/c)2. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for GMp(Q2) are in good agreement with the empirical dipole fit.

1 data table match query

The measured cross section have been devided by those obtained using the dipole form for the proton form factors: G_E=1/(1+Q2/0.71)**2, G_E(Q2)=G_M(Q2)/mu,where Q2 in GeV2, mu=2.79.


Photoproduction of neutral pions on hydrogen at photon energies between 200 and 440 mev

Fischer, G. ; Fischer, H. ; Von Holtey, G. ; et al.
Nucl.Phys.B 16 (1970) 93-101, 1970.
Inspire Record 62733 DOI 10.17182/hepdata.16659

Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements on the Differential Cross-Section of the pi0 Photoproduction on Hydrogen

Almehed, S. ; Von Dardel, G. ; Jarlskog, G. ; et al.
Phys.Scripta 13 (1976) 321-326, 1976.
Inspire Record 115713 DOI 10.17182/hepdata.19325

The differential cross section for photoproduction of π° on hydrogen has been measured in a photon energy range of 560-690 MeV and for production angles in the interval 90°-105° in the centre of mass system. The experiment detects the recoil proton and a π°-decay photon in coincidence, using optical spark chambers and a lead glass Cerenkov counter. Presented cross sections, based on 35 000 events recorded on film, are in good agreement with recent phase shift analysis.

2 data tables match query

No description provided.

No description provided.