Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .
No description provided.
We present the preliminary results of Experiment 864's search for antideuterons in 11.5 GeV/c per nucleon Au + Pt collisions at the AGS. The data represents 14 billion 10% central interactions selectively triggered for events with high mass candidates. Antideuteron invariant yields are found to be 3.5 ± 1.5( stat. ) +0.9 −0.5 ( sys. ) × 10 −8 GeV −2 c 2 in the rapidity range between y = 1.8 and 2.2 ( y cm = 1.6) for 〈 p t 〉= 0.35 GeV/c and 3.7±2.7( stat. ) +1.4 −1.5 ( sys. ) × 10 −8 GeV −2 c 2 between rapidities y = 1.4 and 1.8 at 〈 p t 〉= 0.26 GeV/c. These yields, along with E864 antiproton measurements, lead to a most probable value for the coalescence factor B 2 of 4.1 ± 2.9( stat. ) +2.3 −2.4 ( sys. ) × 10 −3 GeV −2 c 3 after correcting antiproton yields for antihyperon feeddown contributions. Implications for the coalescence model and antimatter annihilation from an antideuteron measurement are also discussed.
No description provided.
PRELIMINARY DATA.
DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.
No description provided.
Combined electron and muon analysis.
We present a measurement of tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.
No description provided.
None
No description provided.
No description provided.
No description provided.
We report on a measurement of subthreshold η and π0 mesons in the reaction Ar+Ca at 180A MeV. We find that the ratio of the η to π0 meson-production cross section is more than a factor of 20 smaller than the one expected from threshold-energy scaling of meson production. In addition, the multiplicity of high mt π0 increases faster with the centrality of the reaction than the multiplicity of the bulk of π0 mesons. This behavior is explained by the rescattering of π mesons in nuclear matter at the origin of most energetic particles.
No description provided.
No description provided.
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, ωa, between the spin precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons. The ratio R of ωa to the Larmor precession frequency of free protons, ωp, in the storage-ring magnetic field was measured. We find R=3.707220(48)×10−3. With μμ/μp=3.18334547(47) this gives aμ+=1165925(15)×10−9 ( ±13ppm), in good agreement with the previous CERN measurements for μ+ and μ− and of approximately the same precision.
The anomalous g value is related to the gyromagnetic ratio by MOM(NAME=ANOMALOUS MAGNETIC) = (G-2)/2. The beam momentum spread is about 1 PCT.
Analyzing powers for p→n→pp(S01)π− were measured at beam energies 353, 404, and 440 MeV by extracting the quasifree process from p→d→pppπ−. Partial wave amplitude analysis yields a significant contribution from the isospin 1, s-wave channel. This contribution is relatively much larger than that expected from theoretical models which have been successful in describing the isospin 1, s-wave channel behavior of pp→ppπ0 cross sections at threshold.
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
In this paper Au+Au collisions at 11.6A GeV/c are characterized by two global observables: the energy measured near zero degrees (EZCAL) and the total event multiplicity. Particle spectra are measured for different event classes that are defined in a two-dimensional grid of both global observables. For moderately central events (σ/σint<12%) the proton dN/dy distributions do not depend on EZCAL but only on the event multiplicity. In contrast the shape of the proton transverse spectra shows little dependence on the event multiplicity. The change in the proton dN/dy distributions suggests that different conditions are formed in the collision for different event classes. These event classes are studied for signals of new physics by measuring pion and kaon spectra and yields. In the event classes doubly selected on EZCAL and multiplicity there is no indication of any unusual pion or kaon yields, spectra, or K/π ratio even in the events with extreme multiplicity.
Table for event classification (from CLASS1 to CLASS8) where ZCAL energy solely used for event selection. Number of Projectile Participants Npp=197*(1-E(P=3)/EKIN(P=1)).
CLASS1 (see Table for event classification).
CLASS1 (see Table for event classification).
A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.
The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.