The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV.
The inclusive top quark pair ($t\bar{t}$) production cross-section $\sigma_{t\bar{t}}$ has been measured in $pp$ collisions at $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV with the ATLAS experiment at the LHC, using $t\bar{t}$ events with an opposite-charge $e\mu$ pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 fb$^{-1}$ and the 2012 8 TeV dataset of 20.3 fb$^{-1}$. The cross-section was measured to be: $\sigma_{t\bar{t}}=182.9\pm 3.1\pm 4.2\pm 3.6 \pm 3.3$ pb ($\sqrt{s}=7$ TeV) and $\sigma_{t\bar{t}}=242.9\pm 1.7\pm 5.5\pm 5.1\pm 4.2$ pb ($\sqrt{s}=8$ TeV, updated as described in the Addendum), where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically-predicted cross-section on $m_t^{\rm pole}$, giving a result of $m_t^{\rm pole}=172.9^{+2.5}_{-2.6}$ GeV. By looking for an excess of $t\bar{t}$ production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks $\tilde{t}_1$ with masses close to the top quark mass decaying via $\tilde{t}_1\rightarrow t\tilde{\chi}^0_1$ to predominantly right-handed top quarks and a light neutralino $\tilde{\chi}_0^1$, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95% confidence level.
A search for a massive $W'$ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in $pp$ collisions at the LHC. The dataset was taken at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and corresponds to 20.3 fb$^{-1}$ of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass $W'$ bosons in the range $1.5 - 3.0$ TeV. $b$-tagging is used to identify jets originating from $b$-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the $W' \rightarrow tb$ cross section times branching ratio ranging from $0.16$ pb to $0.33$ pb for left-handed $W'$ bosons, and ranging from $0.10$ pb to $0.21$ pb for $W'$ bosons with purely right-handed couplings. Upper limits at 95% confidence level are set on the $W'$-boson coupling to $tb$ as a function of the $W'$ mass using an effective field theory approach, which is independent of details of particular models predicting a $W'$ boson.
A search for resonant WZ production in the lnul'l' (l, l'= e,mu) decay channel using 20.3 fb-1 of sqrt(s) = 8 TeV pp collision data collected by the ATLAS experiment at LHC is presented. No significant deviation from the Standard Model prediction is observed and upper limits on the production cross sections of WZ resonances from an extended gauge model W' and from a simplified model of heavy vector triplets are derived. A corresponding observed (expected) lower mass limit of 1.52 (1.49) TeV is derived for the W' at the 95% confidence level.
The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5
This letter reports the results of a search for top and bottom squarks from gluino pair production in 4.7 fb^-1 of pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. The search is performed in events with large missing transverse momentum and at least three jets identified as originating from a b-quark. Exclusion limits are presented for a variety of gluino-mediated models with gluino masses up to 1 TeV excluded.
This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (\={t}) in the emu continuum using 2.1/fb of data collected by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95% C.L. are calculated as a function of the scalar top mass (m_{\={t}}). The upper limits on the production cross section for pp->emuX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_{\={t}}=95 GeV to 30 fb for m_{\={t}}=1000 GeV.
A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb$^{-1}$ of integrated luminosity at $\sqrt{s}$=8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet-mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the Standard Model expectations, and limits are set on the mass scale in effective field theories that describe the interaction of dark matter and Standard Model particles.
Two-particle correlations in relative azimuthal angle ($\Delta-\phi$) and pseudorapidity ($\Delta-\eta$) are measured in $\sqrt{s_{NN}}$ = 5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 $\mu b^{-1}$ of data as a function of $p_T$ and the transverse energy ($\sum E_T^{Pb}$) summed over 3.1 < $\eta$ < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|$\Delta-\eta$|<5) near-side ($\Delta-\phi$ ~ 0) correlation that grows rapidly with increasing $\sum E_T^{Pb}$. A long-range away-side ($\Delta-\phi$ ~ pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small $\sum E_T^{Pb}$, is found to match the near-side correlation in magnitude, shape (in $\Delta-\eta$ and $\Delta-\phi$) and $\sum E_T^{Pb}$ dependence. The resultant $\Delta-\phi$ correlation is approximately symmetric about $\pi$/2, and is consistent with a cos(2$\Delta-\phi$) modulation for all $\sum E_T^{Pb}$ ranges and particle $p_T$. The amplitude of this modulation is comparable in magnitude and $p_T$ dependence to similar modulations observed in heavy-ion collisions, suggestive of final-state collective effects in high multiplicity events.
Searches are performed for resonant and non-resonant Higgs boson pair production in the $\gamma\gamma b\bar{b}$ final state using 20 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The difference derives from a modest excess of events, corresponding to 2.4 standard deviations from the background-only hypothesis. The limit observed in the search for a narrow $X \to hh$ resonance ranges between 0.7 and 3.5 pb as a function of the resonance mass.