Electroproduction of $\pi^+ n$, $\pi^- p$ and $K^+ \Lambda$, $K^+ \Sigma^0$ Final States Above the Resonance Region

Brauel, P. ; Canzler, T. ; Cords, D. ; et al.
Z.Phys.C 3 (1979) 101, 1979.
Inspire Record 142872 DOI 10.17182/hepdata.15909

The reactionsΣvp→π+n,K+Λ,K+∑0 andΣvn→π+n were studied at invariant hadronic masses around 2.2. GeV forQ2=0.06, 0.28, 0.70, and 1.35 GeV2. The main results are: At small |t| the π+ production is dominated by longitudinally polarized photons and can be described by one pion exchange. At low |t| the transverse (π+n) cross section drops steeply withQ2, but remains roughly constant forQ2≧0.5 GeV2. For |t⊢≧0.8 GeV2, (π+n/dt) is almost independent ofQ2. The integrated cross section (π+n) shows a similarQ2-dependence asσtot (γvp) forQ2≧0.28 GeV2. The ratioσ(π-p)/σ(π+n) atQ2=0.70 and 1.35 GeV2 for |t|≧0.6 GeV2 is smaller than in photoproduction and close to 1/4. The ratioσ(K+∑0 decreases steeply withQ2 following roughly the predictions of the quark-parton model.

28 data tables

PHI AND EPSILON DEPENDENCE FITTED TO GIVE COMPONENTS OF CROSS SECTION.

No description provided.

No description provided.

More…

Separation of Sigma-L and Sigma-u in pi+ Electroproduction Above the Resonance Region

Brauel, P. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 69 (1977) 253-256, 1977.
Inspire Record 119473 DOI 10.17182/hepdata.27538

The four cross section components σ U , σ L , σ P and σ I were separated in the reaction γ V + p → π + + n at an electron four momentum transfer of Q 2 = 0.70 GeV 2 and an invariant hadronic mass of 2.19 GeV in the range of t between t min and −0.28 GeV 2 . The longitudinal cross section σ L dominates at small |t| and decreases rapidly with increasing |t|. The data are in rough agreement with the prediction of a generalized Born term model. The resulting value for the pion electromagnetic form factor is F π = 0.42 ± 0.015.

2 data tables

TMIN = 0.024 GEV**2.

No description provided.


Pi+ Electroproduction Above the Resonance Region

Brauel, P. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 65 (1976) 181-183, 1976.
Inspire Record 109471 DOI 10.17182/hepdata.45245

The reaction e + p → e' + n + π + was studied detecting e' and e' and π + in coincidence at an invariant hadronic mass of 2.19 GeV. The measurements were performed at electron four-momentum transfers squared of Q 2 = 0.06, 0.28, 0.70, and 1.35 GeV 2 in the range of t = ( γ v − π ) 2 between t min and −1.0 GeV 2 . The cross section d 2 σ / dtd was found to be roughly independent of Q 2 for Q 2 > 0.7 GeV 2 and ∥ t ∥ > 0.2 GeV 2 .

7 data tables

No description provided.

No description provided.

No description provided.

More…

Pi- Electroproduction Off Deuterium Above the Resonance Region

Brauel, P. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 65 (1976) 184-186, 1976.
Inspire Record 114029 DOI 10.17182/hepdata.27606

The reactions e + d → e ' + p S + p + π − and e + d → e ' + n S + n + π + were measured detecting electron and pion in coincidence at an invariant hadronic mass of 2.19 GeV. The measurements were performed at electron four-momentum transfer squared of f 2 = 0.70 and 1.35 GeV 2 in the range of t = ( γ v − π ) 2 between t min and −1.0 GeV 2 . The cross section d 2 σ / dtdφ of the reaction e + n → e' + p + π − was determined.

3 data tables

ACTUALLY RATIO OF PI- TO PI+ PRODUCTION OFF DEUTERIUM.

No description provided.

No description provided.


Bubble Chamber Study of Photoproduction by 2.8-GeV and 4.7-GeV Polarized Photons. 1. Cross-Section Determinations and Production of rho0 and Delta++ in the Reaction gamma p --> p pi+ pi-

Ballam, Joseph ; Chadwick, G.B. ; Gearhart, R. ; et al.
Phys.Rev.D 5 (1972) 545, 1972.
Inspire Record 67165 DOI 10.17182/hepdata.3635

Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.

20 data tables

FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.

No description provided.

NO TMIN CORRECTION HAS BEEN MADE.

More…