Measurements of the invariant cross sections for the reaction p(400 GeV)+(Li6, Be,C,Al,Cu,Ta)→(d, t, He3, He4)+X at laboratory angles of 70, 90, 118, 137, and 160° are reported. Comparisons are made using several scaling variables. NUCLEAR REACTIONS Inclusive cross section; 400 GeV incident protons; Li6, Be, C, Al, Cu, Ta targets; production of d, t, He3, He4; Lab angles 70°, 90°, 118°, 137°, and 160°.
No description provided.
No description provided.
No description provided.
We have measured the single-particle inclusive cross sections for p+p→π±+X, K±+X, p+X, p¯+X in the low-p⊥ region (≲ 1.5 GeV/c) as a function of the radial scaling variable XR in p−p collisions at 100, 200, and 400 GeV at Fermilab. The measured π+π− and K+K− ratios are shown to be remarkably similar to the same ratios which have recently been measured at large p⊥ at 90° in the center-of-mass system.
No description provided.
No description provided.
No description provided.
We report measurements of semi-inclusive pion electroproduction from both hydrogen and deuterium targets carried out at the Wilson Synchrotron Laboratory at Cornell University. Measurements were made at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.15, 4.0), and (3.11, 1.2) with hydrogen and deuterium, and at (2.15, 2.0), (2.67, 3.3), and (3.11, 1.7) with hydrogen only. The invariant virtual-photoproduction cross section for pions scaled by the total cross section is studied as a function of x′, pT2, W, and Q2. The invariant structure function shows no Q2 dependence and a weak W dependence. The ratio of π+ to π− production is also presented, but a distinction between a universal ω or W dependence cannot be made.
No description provided.
No description provided.
No description provided.
We have measured the production of π+ and π− in 200-, 300-, and 400-GeV p−p and 400-GeV p−d collisions for transverse momenta (p⊥) ranging from 0.77 to 7.67 GeV/c. At large values of x⊥=2p⊥s, where s is the c.m. energy, we have fitted the p−p data to the form A(1−x⊥)bp⊥−n; we obtain n=8.2±0.5 for π+ and 8.5±0.5 for π−. At x⊥>0.3 the π+π− ratio in p−p collisions rises appreciably with increasing x⊥ whereas the π+π− ratio obtained from the difference of p−d and p−p cross sections is ∼ 1.0 at all x⊥.
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
We report measurements of the inclusive electroproduction reaction e+p→e+p+X for protons produced between 100° and 150° in the virtual-photon-target-proton center-of-mass system. Data were taken at the (W,Q2) points (2.2 GeV, 1.2 GeV2), (2.2, 3.6), (2.65, 1.2), (2.65, 2.0), (2.65, 2.8), (2.65, 3.6), (3.1, 1.2), and (3.1, 2.0). The invariant structure function is studied as a function of W, Q2, xT, pT2, and MX2.
No description provided.
No description provided.
No description provided.
The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .
No description provided.
No description provided.
No description provided.
We report measurements of the invariant cross section in the forward hemisphere for inclusive photoproduction of π±, K±, p, and p¯ from hydrogen and deuterium with an incident photon energy of 18 GeV. A small amount of data was also taken at incident energies of 9 and 13 GeV. The measurements were made using the SLAC 20-GeV/c spectrometer, and a bremsstrahlung-subtraction technique was used to obtain the cross sections at the specified incident energy. The data are compared with those from lower-energy experiments and interpreted within the context of the Mueller-Regge model and the constituent-interchange model.
No description provided.
No description provided.
No description provided.
Measurements of the cross section for the reaction p+p→π0+anything have been completed. The data cover a range of incident proton energies 50-400 GeV, π0 transverse momenta 0.3-4 GeV/c, and laboratory angles 30-275 mrad. The experiment was performed using the internal proton beam at the Fermi National Accelerator Laboratory. A lead-glass counter was used to detect photons from the decay of π0's produced by collisions in thin targets of hydrogen or carbon. Tables of the measured cross sections are presented.
No description provided.
No description provided.
No description provided.
Results are given on the inclusive production of charged pions, kaons, and nucleons, in proton-proton collisions at c.m. energies from √ s = 23 to 63 GeV at large angles and for the transverse momentum range 0.1 < p T < 4.8 GeV/ c . The dependence of the production spectra on the collision energy √ s , the transverse momentum p T , and the longitudinal rapidity is discussed.
Axis error includes +- 15.0/15.0 contribution (NORMALIZATION ERROR - THE LARGEST SYSTEMATICS).
Axis error includes +- 15.0/15.0 contribution (NORMALIZATION ERROR - THE LARGEST SYSTEMATICS).
Axis error includes +- 15.0/15.0 contribution (NORMALIZATION ERROR - THE LARGEST SYSTEMATICS).
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.