Showing 10 of 487 results
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t,2}$ absolute differential cross-section at particle level.
$|{y}^{t,2}|$ absolute differential cross-section at particle level.
$m^{t\bar{t}}$ absolute differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level.
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|\cos\theta^{*}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t}$ absolute differential cross-section at parton level.
$|y^{t}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t,2}$ absolute differential cross-section at parton level.
$|{y}^{t,2}|$ absolute differential cross-section at parton level.
$m^{t\bar{t}}$ absolute differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|\cos\theta^{*}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
A measurement of the top-quark mass ($m_t$) in the $t\bar{t}\rightarrow~\textrm{lepton}+\textrm{jets}$ channel is presented, with an experimental technique which exploits semileptonic decays of $b$-hadrons produced in the top-quark decay chain. The distribution of the invariant mass $m_{\ell\mu}$ of the lepton, $\ell$ (with $\ell=e,\mu$), from the $W$-boson decay and the muon, $\mu$, originating from the $b$-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract $m_t$. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb$^{-1}$ of $\sqrt{s} = 13~\textrm{TeV}$$pp$ collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is $m_{t} = 174.41\pm0.39~(\textrm{stat.})\pm0.66~(\textrm{syst.})\pm0.25~(\textrm{recoil})~\textrm{GeV}$, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup.
Top mass measurement result.
A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.
The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.
Diphoton invariant mass in the signal region using a 0.1 GeV binning.
Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
Parametrization of the $A_{X}$ factor, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
The correction factor, $C_{X}$, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, and acceptance correction factor, $A_{X}$, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level. Both are computed for NWA spin-0 models as a function of $m_{X}$.
Effect of event selections on a scalar MC signal sample generated for $m_{X}$ = 15 GeV and on the data. For the MC sample, the efficiencies are shown after applying event weights and a truth level filter that requires two photons with $p^{\gamma\gamma}_{T}>40$ GeV; for the data, the absolute yields are shown. The initial yields for data include a trigger preselection that is the OR of a list of single photon and diphoton triggers. The "2 $loose$ photons" step includes the kinematic acceptance cuts.
Parameterization of the Double Sided Crystal Ball function parameters describing the scalar mass resolution model as a function of $m_{X}$ [GeV].
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the short lifetime regime.
List of expected and observed events, $p_{0}$-value and the corresponding $Z$ local significance, as well as the 95% CLs upper limit of the expected and observed signal events ($S^{95}_ ext{exp} and $S^{95}_ ext{obs}$ ) in each mass window for SR-Inclusive bins of the long lifetime regime.
The observed $p_{\rm T$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Expected and observed distributions in SR-Inclusive_Low of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal track selection efficiency as a function of CLLP $\beta\gamma$ for SR-Inclusive_Low and SR-Inclusive_High bins. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal selection efficiency by the mass window for SR-Inclusive_Low and SR-Inclusive_High bins.
Acceptance for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |eta| < 1.8 and r_decay > 500 mm.
Acceptance for the chargino pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Acceptance for the stau pair-production model for various masses and lifetimes. The acceptance is defined as the fraction of events having at least one charged LLP satisfying pT > 120 GeV, |\eta| < 1.8 and r_decay > 500 mm.
Event-level efficiency for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Event-level efficiency for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the fraction of events satisfying the selection of trigger, event and jet cleaning, ETmiss and primary vertex requirements per events satisfying the acceptance criteria.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Highfor the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the chargino pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Efficiency of SR-Inclusive_Low for the stau pair-production model for various masses and lifetimes. The efficiency is defined as the ratio of events satisfying the signal region selection to those satisfying the acceptance criteria. The mass window is not applied for the presented numbers.
Passing events in event selection steps for the R-hadron pair-production model with m(N1) = 100 GeV for various masses and lifetimes.
Passing events in event selection steps for the R-hadron pair-production model with DeltaM(gluino, N1) = 30 GeV for various masses and lifetimes.
Passing events in event selection steps for the chargino pair-production model for various masses and lifetimes.
Passing events in event selection steps for the stau pair-production model for various masses and lifetimes.
A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.
Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.
Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis
Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.
Cumulative efficiency for simulated signal events to pass each stage of the event selection in the hadhad category. The efficiencies are calculated with respect to HH to bbtautau decays in which both tau-leptons decay hadronically. The ‘Pre-selection’ consists of basic requirements, including that at least two tau-had-vis pass loose kinematic requirements, at least one of the tau-had-vis candidate passes identification requirement, and that events do not contain an electron or muon. The ‘Object selections’ require exactly two tau-had-vis candidates, and at least two jets with pT > 25 GeV and abs(eta) < 2.5. The ‘Loose tau ID’ requires that both tau-had-vis candidates pass identification requirements. The ‘DTT offline jet cuts’ are cuts placed on the pT of the reconstructed jet or tau-had-vis that are geometrically matched to the HLT objects, to ensure the efficiencies of the HLT objects reach the plateau region.
Cumulative efficiency for simulated signal events to pass each stage of the event selection in the lephad SLT category. The efficiencies are calculated with respect to HH to bbtautau decays in which one tau-lepton decays hadronically and one decays leptonically. The ‘Pre-selection’ consists of basic requirements, including that at least one tau-had-vis candidate and one lepton pass loose kinematic requirements. The ‘Object selections’ require exactly one tau-had-vis candidate, and at least two jets with pT > 25 GeV and abs(eta) < 2.5. The ‘Trigger specific offline pT cuts’ are cuts placed on the pT of the reconstructed jet or tau-had-vis that are geometrically matched to the HLT objects, to ensure the efficiencies of the HLT objects reach the plateau region.
Cumulative efficiency for simulated signal events to pass each stage of the event selection in the lephad LTT category. The efficiencies are calculated with respect to HH to bbtautau decays in which one tau-lepton decays hadronically and one decays leptonically. The ‘Pre-selection’ consists of basic requirements, including that at least one tau-had-vis candidate and one lepton pass loose kinematic requirements. The ‘Object selections’ require exactly one tau-had-vis candidate, and at least two jets with pT > 25 GeV and abs(eta) < 2.5. The ‘Trigger specific offline pT cuts’ are cuts placed on the pT of the reconstructed jet or tau-had-vis that are geometrically matched to the HLT objects, to ensure the efficiencies of the HLT objects reach the plateau region.
Post-fit expected number of signal and background events and observed number of data events after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis.
Observed and expected limits at 95% CL on the cross-section of HH production, for the non-resonant ggF+VBF HH search, and the resonant HH search for four values of the resonance mass mX.
Acceptance times efficiency for the full analysis selections as a function of the resonance mass mX in the hadhad, lephad SLT and lephad LTT trigger categories, and the combined lephad. The acceptance times efficiency is evaluated for HH to bbtautau decays, with respect to the targeted tau-lepton decay modes (lephad or hadhad).
Post-fit distribution of mHH in the hadhad channel.
Post-fit distribution of mHH in the lephad SLT channel.
Post-fit distribution of mHH in the lephad LTT channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of of di-b-jet mass in the hadhad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
BDT for SM HH in the hadhad channel
NN for SM HH in the lephad SLT channel
NN for SM HH in the lephad LTT channel
PNN for mX = 500 GeV resonant HH in the hadhad channel
PNN for mX = 500 GeV resonant HH in the lephad SLT channel
PNN for mX = 500 GeV resonant HH in the lephad LTT channel
PNN for mX = 1000 GeV resonant HH in the hadhad channel
PNN for mX = 1000 GeV resonant HH in the lephad SLT channel
PNN for mX = 1000 GeV resonant HH in the lephad LTT channel
Event yields as a function of log10(S/B) for data, background and non-resonant HH signal. Final discriminant bins from the hadhad, lephad SLT and lephad LTT categories are combined into bins of log10(S/B). The B is the fitted background yield assuming background-only hypothesis, and the signal S is scaled to the SM expected cross-section.
Observed and expected limits at 95% CL on the cross-section of the resonant HH production as a function of the scalar resonance mass mX.
Post-fit distribution of delta-R between the taus in the hadhad channel.
Post-fit distribution of delta-R between the b-tagged jets in the hadhad channel.
Post-fit distribution of delta-R between the taus in the lephad SLT channel.
Post-fit distribution of delta-R between the b-tagged jets in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad SLT channel.
Post-fit distribution of pT of the subleading b-tagged jet in the lephad SLT channel.
Post-fit distribution of MTW in the lephad SLT channel.
Post-fit distribution of missing transverse momentum in the lephad SLT channel.
Post-fit distribution of missing transverse momentum centrality in the lephad SLT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad LTT channel.
Post-fit distribution of delta-R between the taus in the lephad LTT channel.
Post-fit distribution of delta-phi between the lepton and the missing transverse momentum in the lephad LTT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad LTT channel.
Post-fit distribution of the total transverse momentum s in the lephad LTT channel.
PNN for mX = 300 GeV resonant HH in the hadhad channel
PNN for mX = 300 GeV resonant HH in the lephad SLT channel
PNN for mX = 300 GeV resonant HH in the lephad LTT channel
PNN for mX = 1600 GeV resonant HH in the hadhad channel
PNN for mX = 1600 GeV resonant HH in the lephad SLT channel
PNN for mX = 1600 GeV resonant HH in the lephad LTT channel
Local p-value of the background-only hypothesis as a function of the resonance mass.
A search for a $WZ$ resonance, in the fully leptonic final state (electrons and muons), is performed using 139 fb$^{-1}$ of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi$-$Machacek model, produced by $WZ$ fusion, and of a Heavy Vector Triplet, with the resonance produced by $WZ$ fusion or the Drell$-$Yan process. No significant excess over the Standard Model predictions is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes.
Comparisons of the data and the expected background distributions of the WZ invariant mass in the Drell-Yan signal region. The background predictions are obtained through a background-only simultaneous fit to the Drell-Yan signal region and the WZ-QCD Drell-Yan and ZZ Drell-Yan control regions. The yields are normalized to the bin width.
Comparisons of the data and the expected background distributions of the WZ invariant mass in the ANN-based VBF signal region. The background predictions are obtained through a background-only simultaneous fit to the VBF signal region and the WZ-QCD and ZZ VBF control regions. The yields are normalized to the bin width
Comparisons of the observed data and the expected background distributions of the WZ invariant mass using the cut-based VBF selection. The background predictions are obtained through a background-only simultaneous fit to the VBF cut-based signal region and the WZ-QCD and ZZ VBF control regions. The yields are normalized to the bin width.
Drell-Yan signal region selection cutflow for a simulated W' in the HVT model A with m_W' = 1 TeV. The unweighted number of events is shown.
VBF signal region selection cutflow for a simulated W' in the HVT model C with m_W' = 500 GeV. The unweighted number of events is shown.
VBF signal region selection cutflow for a simulated H5+ in the GM model with m_H5+ = 450 GeV. The unweighted number of events is shown.
The acceptancetimes efficiencyof the HVT W' in the Drell-Yan signal region for different mass points and for the individual channels and the sum of all channels. The uncertainty includes both statistical and experimental systematic components.
The acceptancetimes efficiencyof VBF H5+ selection after the ANN-based VBF selection at different mass points for the individual channels and the sum of all channels. The uncertainty includes both statistical and experimental systematic components.
The acceptancetimes efficiencyof VBF HVT W' selection after the ANN-based VBF selection at different mass points for the individual channels and the sum of all channels. The uncertainty includes both statistical and experimental systematic components.
The acceptancetimes efficiencyof VBF H5+ selection after the cut-based VBF selection at different mass points for the individual channels and the sum of all channels. The uncertainty includes both statistical and experimental systematic components.
The acceptancetimes efficiencyof VBF HVT W' selection after the cut-based VBF selection at different mass points for the individual channels and the sum of all channels. The uncertainty includes both statistical and experimental systematic components.
Observed and expected 95% CL exclusion upper limits on sigma * B(W' -> WZ) for the Drell-Yan production of a W' boson in the HVT model as a function of its mass. The LO theory predictions for HVT Model A with g_V=1 and Model B with g_V=3 are also shown.
Using the ANN VBF selection, observed and expected 95% CL upper limits on sigma * B(W' -> WZ) for the VBF production of a W' boson in the HVT with parameter c_F=0, as a function of its mass. The LO theory predictions for HVT VBF model with different values of the coupling parameters g_V and c_H are also shown.
Using the ANN VBF selection, observed and expected 95% CL upper limits on sigma * B(W' -> WZ) of the GM model as a function of m_H_5.
Using the ANN VBF selection, observed and expected 95% CL upper limits on sin(thetaH) of the GM model as a function of m_H_5.
Using the cut-based VBF selection, observed and expected 95% CL upper limits on sigma * B(W' -> WZ) for the VBF production of a W' boson in the HVT with parameter c_F=0, as a function of its mass. The LO theory predictions for HVT VBF model with different values of the coupling parameters g_V and c_H are also shown.
Using the cut-based VBF selection, observed and expected 95% CL upper limits on sigma * B(W' -> WZ) of the GM model as a function of m_H_5.
Using the cut-based VBF selection, observed and expected 95% CL upper limits on sin(thetaH) of the GM model as a function of m_H_5.
A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.
Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the onshell $W\!Z$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in the SRs for the $W\!h$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the onshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the SRs of the $W\!h$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>lowETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>highETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W^{*}\!Z^{*}$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the onshell $W\!Z$ and $W\!h$ selections. The third and fourth column list the 95 CL upper limits on the visible cross-section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the offshell $W\!Z$ selection. The third and fourth column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the RJR selection. The SM prediction is taken from the background-only fit. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the RJR selection. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
{Results of the discovery-fit for the SRs of the RJR selection, calculated using pseudo-experiments.} The first and second column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The third column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5. vspace{0.5em}
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
Summary of onshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (300,200) GeV and m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (600,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal points, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of $W\!h$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (190,60) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (120,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (100,40) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (185,125) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including $pp$ and $p$+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb$^{-1}$ of $p$+Pb and 3.6 pb$^{-1}$ of $pp$ collisions at 5.02 TeV. The yields of charged hadrons with $p_\mathrm{T}^\mathrm{ch} >0.5$ GeV near and opposite in azimuth to jets with $p_\mathrm{T}^\mathrm{jet} > 30$ or $60$ GeV, and the ratios of these yields between $p$+Pb and $pp$ collisions, $I_{p\mathrm{Pb}}$, are reported. The collision centrality of $p$+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The $I_{p\mathrm{Pb}}$ values are consistent with unity within a few percent for hadrons with $p_\mathrm{T}^\mathrm{ch} >4$ GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central $p$+Pb collisions.
The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).
The per-jet charged particle yield in pPb and pp collisions for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
The per-jet charged particle yield in pPb and pp collisions for hadrons opposite to a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).
The ratio of per-jet charged particle yields in pPb and pp collisions, $I_{pPb}$, for hadrons near a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
The ratio of per-jet charged particle yields in pPb and pp collisions, $I_{pPb}$, for hadrons opposite to a $p_{T}^{\textrm{jet}} > 30~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).
The ratio of per-jet charged particle yields in pPb and pp collisions, $I_{pPb}$, for hadrons near a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} < \pi/8$).
The ratio of per-jet charged particle yields in pPb and pp collisions, $I_{pPb}$, for hadrons opposite to a $p_{T}^{\textrm{jet}} > 60~\textrm{GeV}$ jet ($\Delta\phi_{\textrm{ch,jet}} > 7\pi/8$).
Measurements of Higgs boson production cross-sections are carried out in the diphoton decay channel using 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The analysis is based on the definition of 101 distinct signal regions using machine-learning techniques. The inclusive Higgs boson signal strength in the diphoton channel is measured to be $1.04^{+0.10}_{-0.09}$. Cross-sections for gluon-gluon fusion, vector-boson fusion, associated production with a $W$ or $Z$ boson, and top associated production processes are reported. An upper limit of 10 times the Standard Model prediction is set for the associated production process of a Higgs boson with a single top quark, which has a unique sensitivity to the sign of the top quark Yukawa coupling. Higgs boson production is further characterized through measurements of Simplified Template Cross-Sections (STXS). In total, cross-sections of 28 STXS regions are measured. The measured STXS cross-sections are compatible with their Standard Model predictions, with a $p$-value of $93\%$. The measurements are also used to set constraints on Higgs boson coupling strengths, as well as on new interactions beyond the Standard Model in an effective field theory approach. No significant deviations from the Standard Model predictions are observed in these measurements, which provide significant sensitivity improvements compared to the previous ATLAS results.
Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production, normalized to their SM predictions. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.
Correlation matrix for the measurement of production cross-sections of the Higgs boson times the H->yy branching ratio.
Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered, normalized to their SM predictions. The values for the gg->H process also include the contributions from bbH production.
Correlation matrix for the measurement of STXS parameters in each of the 28 regions considered.
Fitted values for kappa_g and kappa_y.
Correlation matrix for the measurement of kappa_g and kappa_y.
Summary of the 68% CL confidence intervals for individual measurements of SMEFT parameters observed in data. In each case, SMEFT parameters other than the one measured are fixed to 0.
Results of the EV parameter measurement in data, in the linear and linear+quadratic parameterizations of the SMEFT. All the EVs parameters are free to vary in the fits. The ranges correspond to 68% CL confidence intervals.
Observed linear correlation coefficients of the EVs parameters in the linear parameterization.
Observed linear correlation coefficients of the EVs parameters in the linear+quadratic parameterization.
Cross-sections times H->yy branching ratio for ggF +bbH, VBF, VH, ttH, and tH production. The values are obtained from a simultaneous fit to all categories. The theory uncertainties in the predictions include uncertainties due to missing higher-order terms in the perturbative QCD calculations and choices of parton distribution functions and value of alpha_s, as well as the H->yy branching ratio uncertainty.
Best-fit values and uncertainties for STXS parameters in each of the 28 regions considered. The values for the gg->H process also include the contributions from bbH production.
Correlation matrix for the measurement of STXS parameters in each of the 33 regions considered.
This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a $b$-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in $pp$ collisions at the LHC, using 139 fb$^{-\text{1}}$ of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30$^{+\text{0.13}}_{-\text{0.09}}$) is observed (expected) at 95% confidence level.
Post-fit signal region yields for the tt0L-high and the tt0L-low analyses. The bottom panel shows the statistical significance of the difference between the SM prediction and the observed data in each region. '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the signal region for the tt1L analysis: each bin of such distribution corresponds to a single SR included in the fit. 'Other' includes contributions from $t\bar{t}W$, $tZ$, $tWZ$ and $t\bar{t}$ (semileptonic) processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Representative fit distribution in the same flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Summary of the total uncertainty in the background prediction for each SR of the tt0L-low, tt0L-high, tt1L and tt2L analysis channels in the statistical combination. Their dominant contributions are indicated by individual lines. Individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
$E_{\text{T}}^{\text{miss}}$ distribution in SR0X for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRWX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
$E_{\text{T}}^{\text{miss}}$ distribution in SRTX for the tt0L-low analysis. The contributions from all SM backgrounds are shown after the profile likelihood simultaneous fit to all tt0L-low CRs, with the hatched bands representing the total uncertainty. The category '$t\bar{t}$ (other)' represents $t\bar{t}$ events without extra jets or events with extra light-flavour jets. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The expected distributions for selected signal models are shown as dashed lines. The overflow events are included in the last bin. The bottom panels show the ratio of the observed data to the total SM background prediction, with the hatched area representing the total uncertainty in the background prediction and the red arrows marking data outside the vertical-axis range.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Associated production of DM with both single top quarks ($tW$ and $tj$ channels) and top quark pairs is considered. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for each individual channel and their statistical combination.
Exclusion limits for colour-neutral scalar mediator dark matter models as a function of the mediator mass $m(\phi)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Exclusion limits for colour-neutral pseudoscalar mediator dark matter models as a function of the mediator mass $m(a)$ for a DM mass $m_{\chi} = 1$ GeV. Only associated production of DM with top quark pairs is considered for this interpretation. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross section to the nominal cross section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines show the observed (expected) exclusion limits for the tt0L-high and tt0L-low analyses and their statistical combination.
Representative fit distribution in the different flavour leptons signal region for the tt2L analysis: each bin of such distribution, starting from the red arrow, corresponds to a single SR included in the fit. 'FNP' includes the contribution from fake/non-prompt lepton background arising from jets (mainly $\pi/K$, heavy-flavour hadron decays and photon conversion) misidentified as leptons, estimated in a purely data-driven way. 'Other' includes contributions from $t\bar{t}W$, $tZ$ and $tWZ$ processes. The total uncertainty in the SM expectation is represented with hatched bands and the expected distributions for selected signal models are shown as dashed lines.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal acceptance in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of accepted events at generator level in signal Monte Carlo simulation divided by the total number of events in the sample.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$t\bar{t}$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tW$ model, defined as the number of selected reconstructed events divided by the acceptance.
Signal efficiency in SR0X, SRWX and SRTX for simplified DM+$tj$ model, defined as the number of selected reconstructed events divided by the acceptance.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 2045000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$t\bar{t}$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 400000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 120000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tW$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 100000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(\phi, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 169000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SR0X. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRWX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
Cutflow for the reference point DM+$tj$ $m(a, \chi) = (10, 1)$ GeV in signal region SRTX. The column labelled 'weighted' shows the event yield including all correction factors applied to simulation, and is normalised to 139 fb$^{-1}$. A notable exception concerns the 'weighted' numbers in the first and the second row, labelled 'Total' and 'Filtered', which correspond to $\mathcal{L}\cdot\sigma$ and $\mathcal{L}\cdot\sigma\cdot\epsilon$ expected, respectively. The 'Skim' selection requires the $p_{\text{T}}$ of the leading four jets to be above (80, 60, 40, 40) GeV, the missing transverse momentum $E_{\text{T}}^{\text{miss}} > 140$ GeV, the missing momentum significance $\mathcal{S} > 8$, $\Delta\phi_{\min}(\vec{p}_{\text{T,1-4}},\vec{p}_{\text{T}}^{\text{miss}}) > 0.4$ and a lepton veto. The 'Orthogonalisation' selection is defined in the main body. In total 140000 raw MC events were generated prior to the specified cuts, with the column 'Unweighted yield' collecting the numbers after each cut.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.