We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).
We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.
No description provided.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.
We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.
The general characteristics of inelastic proton-antiproton collisions at the CERN SPS Collider are studied with the UA1 detector using magnetic and calorimetric analysis. Results are presented on charged particle multiplicities and transverse and longitudinal momenta, and on total transverse energy distributions at centre of mass energies ranging from 0.2 to 0.9 TeV.
No description provided.
Invariant cross section of charged hadrons.
Inclusive cross section for single charged hadrons as a function of PT for the pseudorapdity region 0.8 to 4 for centre of mass energy 900 GeV.. Data read from plot.
The production of Λ 's and Ξ − 's in proton-antiproton collisions at 200 and 900 GeV c.m. energy has been studied using decays observed in the UA5 streamer chambers. The results are compared to previously published 546 GeV data, to results from other experiments, and to four theoretical models. The Λ yield per inelastic event is estimated to be 0.42±0.11 at 200 GeV and 0.66±0.14 at 900 GeV. We find a mean number of Ξ − 's per inelastic collision of 0.03 −0.02 +0.04 at 200 GeV and 0.06 −0.03 +0.05 at 900 GeV. The average transverse momentum of Λ's in the rapidity region | y |⩽2 is found to be 0.80 −0.14 +0.20 GeV/ c at 200 GeV and 0.74±0.09 GeV/ c at 900 GeV. The average transverse momentum of Ξ − 's in the rapidity region | y |⩽3 is estimated to be 0.8 −0.2 +0.4 GeV/ c at 200 GeV and 0.7 −0.1 +0.2 GeV/ c at 900 GeV which is lower than the unexpectedly high value of 1.1±0.2 GeV/ c measured at 546 GeV. The ratio of Ξ − production to Λ production in the region | y |⩽2, p t >1 GeV/ c is 0.07 −0.04 +0.08 at 900 GeV. This value is consistent with the ratio found in e + e − collisions and lower energy pp collisions but lower than the value obtained at 546 GeV. The average particle composition of events at 200 and 900 GeV, estimated using UA5 data, is presented.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Multiplicity distributions of charged particles produced in non single-diffractive collisions between protons and antiprotons at centre of mass energies of 200 and 900 GeV are presented. The data were recorded in the UA5 streamer chambers at the CERN Collider, which was operated in a pulsed mode between the two energies. A new method to correct for acceptance limitations and inefficiencies based on the principle of maximum entropy has been used. Multiplicity distributions in full phase space and in intervals of pseudorapidity are presented in tabular form. The violation of KNO scaling in full phase space found by the UA5 group at an energy of 546 GeV is confirmed also at 200 and 900 GeV. The shape of the 900 GeV distribution in full phase space is narrower in the peak region than at 200 GeV but exhibits a pronounced high multiplicity tail. The negative binomial distribution fits data at 200 GeV in all pseudorapidity intervals and in small intervals at 900 GeV. In large intervals at 900 GeV, however, the negative binomial distribution. Fits to the partially coherent laser distribution are also presented as well as comparisons with predictions of the Dual Parton, the Fritiof and the Pythia models.
No description provided.
No description provided.
No description provided.
We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.
Correlation strength for different choices of pseudorapidity intervals.
Correlation strength as a function of the central gap size for the symmetric data.
Correlation strength as a function of the centre of the separating gap for a gap size of 2.
The production of transverse energy clusters in minimum bias proton-antiproton collisions at the CERN SPS Collider is studied with the UA1 detector over a new range of centre of mass energies (√ s = 0.2−0.9 TeV). This study is intended to investigate how low in transverse momentum perturbative QCD is able to describe the dynamics of hadron collisions. We observe that clusters with transverse energy in excess of a few GeV exhibit properties in agreement with QCD expectations for parton scattering, supporting their interpretation in terms of jet production. We find that the jet-event rate represents a sizeable fraction of the inelastic rate and is increasing with √ s over the measured energy range.
No description provided.
No description provided.
No description provided.