Using the ARGUS detector at the DORIS II storage ring at DESY, we have observed a charmed meson of mass (2455±3±5) MeV/c2, decaying to D + π − . The natural width of this state is determined to be (15 +13+5 −10−10 ) MeV c 2 . The fragmentation function is hard, as expected for a leading charmed particle from nonresonant e + e − annihilation. Analysis of the decay angular distribution supports the hypothesis that the observed state is an L =1 excited charmed meson with spin-parity 2 + .
Corrected to zero momentum using fragmentation function of Peterson et al., PR D29 (83) 105.
Data read from graph.
None
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
AUTHORS FIT D2(SIG)/D(XL)/D(PT**2) BY (1-XL)**POWER*EXP(-SLOPE*PT**2).
The NA 32 experiment at the CERN SPS has collected 38 million hadronic interactions with incident 200 GeV/c π−,K− andp beam. Using a segmented silicon active target and a telescope of high resolution silicon microstrip counters we have selected fully reconstructedD0→K−π+,D0→K−π+π+π−,D+→K−π+π+,Ds+→K−K+π+π+ and charge conjugate decays. The integrated cross-sections forDo,D+D*+ andDs+ meson production and the dependence of the cross-section on longitudinal and transverse momentum of theD are presented.
No description provided.
No description provided.
No description provided.
The azimuthal correlation distribution of 102 charmed-particle pairs observed in the hybrid emulsion experiment WA75 is compared with theoretical predictions. The various pairs - (D − D 0 ), (D − D + ), (D 0 D 0 ) and (D + D 0 )-all s how, within statistical error, the same azimuthal correlation distribution, demonstrating its independence from the specific nature of the production channel. Among the decays of 150 charged charmed particles and 138 neutral ones seen, higher multiplicities are favoured for hadronic as opposed to semileptonic decays. The data are consistent with the muonic decays of charged D mesons proceeding through the channels (μ ± , v, K 0 ) and [μ ± , v, K ∗0 (892)] , the fraction through K 0 being 0.76±0.06.
No description provided.
No description provided.
No description provided.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
Using the ARGUS detector at DORIS, we observe the production of D ∗+ s mesons in e + e − annihilation through their subsequent decays to a D + s and a photon. Photons which convert in the beam pipe or drift chamber inner wall are used to obtain a high precision measurement of the D ∗+ s -D + s mass difference, while photons detected in the shower counters are used to determine the production cross section, and to provide an independent measurement of the D ∗+ s -D + s mass difference. The observed D ∗+ s - D + s mass difference is 142.5±0.8±1.5 MeV/ c 2 , and σ(e + e − →D ∗+ s X)·BR(D ∗+ s →D + s γ)(·BR(D + s →φπ + ) is 4.4±1.1±1.0 pb at 10.2 GeV. The width of the D ∗+ s is less than 4.5 MeV/ c 2 at 90% confidence level.
Cross sections uncorrected for branching ratios.
Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.
The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).
Usind data from avp and\(\bar v\)p experiment with BEBC at CERN, the rates for inclusive production ofD*+,Λc+ andD0 invp scattering and ofD*− in\(\bar v\)p scattering are measured. Some examples of the exclusive production ofD*+,Λc+ and∑c++ are given. The cross section for the reactionvp→μ−c++ is estimated.
No description provided.
No description provided.
No description provided.
We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.
No description provided.
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.